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Bile acids, which are steroid molecules originating from cholesterol and synthesized in the liver, play a pivotal role

in regulating glucose metabolism and maintaining energy balance. Upon release into the intestine alongside bile,
they activate various nuclear and membrane receptors, influencing crucial processes. These bile acids have emerged
as significant contributors to managing type 2 diabetes mellitus, a complex clinical syndrome primarily driven by insu-
lin resistance. Bile acids substantially lower blood glucose levels through multiple pathways: BA-FXR-SHP, BA-FXR-
FGFR15/19, BA-TGR5-GLP-1, and BA-TGR5-cAMP. They also impact blood glucose regulation by influencing intestinal
flora, endoplasmic reticulum stress, and bitter taste receptors. Collectively, these regulatory mechanisms enhance
insulin sensitivity, stimulate insulin secretion, and boost energy expenditure. This review aims to comprehensively
explore the interplay between bile acid metabolism and T2DM, focusing on primary regulatory pathways. By examin-
ing the latest advancements in our understanding of these interactions, we aim to illuminate potential therapeutic
strategies and identify areas for future research. Additionally, this review critically assesses current research limitations
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Introduction

Type 2 diabetes mellitus (T2DM) is a complex clinical
syndrome characterized by disrupted glucose metabo-
lism, due to the interplay of genetic and environmental
factors. The proportion of T2DM in patients with dia-
betes is estimated to be 90%-95% [1-3]. The escalating
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burden of T2DM poses significant challenges to public
health, with nearly 500 million affected individuals world-
wide, and projections indicating a substantial increase in
the future [4]. Insulin resistance and pancreatic {3-cell
dysfunction lie at the core of T2DM pathogenesis. Insulin
resistance refers to the impaired response of target tis-
sues, including adipose, liver, and skeletal muscle, to the
actions of insulin, leading to diminished glucose uptake.
Simultaneously, B-cell dysfunction results in inadequate
insulin secretion to compensate for insulin resistance,
further contributing to hyperglycemia [1-3].

The etiology of T2DM involves intricate interactions
between genetic and environmental factors. Genetic
susceptibility, characterized by polymorphisms in genes
related to insulin secretion, insulin action, and [-cell
function, contributes to an increased predisposition to
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the disease. Environmental factors, such as sedentary
lifestyles, unhealthy dietary patterns, and obesity, inter-
act synergistically with genetic factors, influencing the
development of T2DM [2, 5]. Obesity plays a pivotal role
in the pathogenesis of T2DM. Excessive adipose tissue,
especially in visceral depots, induces a state of chronic
low-grade inflammation and dysregulated secretion of
adipokines, impairing insulin signaling pathways and
exacerbating insulin resistance. Adipose tissue dysfunc-
tion further leads to the release of free fatty acids and
adipokines, which contributes to peripheral tissue insulin
resistance [6, 7].

Bile acids (BAs), synthesized from cholesterol in the
liver and excreted into the bile, extend beyond their tradi-
tional role in fat absorption and cholesterol homeostasis.
Emerging evidence suggests crucial involvement in meta-
bolic regulation. Acting as signaling molecules, BAs acti-
vate various receptors, including the farnesoid X receptor
(FXR) and the G-protein-coupled bile acid receptor 5
(TGR5), in the liver and peripheral tissues. Activation of
these receptors exerts modulatory effects on glucose and
lipid metabolism, enhances insulin sensitivity, and main-
tains energy homeostasis [8—10].

The intricate relationship between BAs and the patho-
genesis of T2DM has gained significant attention in
recent research [11-13]. Targeting the bile acid signal-
ing pathways has emerged as a potential therapeutic
strategy for T2DM management. Elucidating the precise
mechanisms underlying the metabolic effects of BAs and
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exploring their therapeutic implications hold promise for
innovative interventions in T2DM treatment.

Given the rising global prevalence of T2DM and the
expanding recognition of BAs’ role in metabolic regula-
tion, comprehensive investigations into the fundamental
mechanisms of T2DM pathogenesis and the therapeutic
potential of bile acid signaling pathways are of utmost
importance. Such research endeavors provide a platform
for novel insights into T2DM management, fostering the
development of innovative therapeutic approaches that
hold the potential to enhance patient outcomes in this
prevalent metabolic disorder.

Synthesis and recovery of Bile acid

Bile acids are byproducts of cholesterol primarily syn-
thesized in the liver, with about 0.4-0.6 g of the daily
synthesized 1-1.5 g cholesterol converted into bile
acids. This synthesis occurs through two pathways: the
classical pathway and the alternative pathway. The clas-
sical pathway, responsible for over 90% of bile acid syn-
thesis, occurs in the hepatic endoplasmic reticulum and
is mediated by cholesterol 7-a-hydroxylase (CYP7A1)
[3, 13, 14]. In its absence, chenodeoxy cholic acid
(CDCA) is produced. The acidic pathway is mediated
by cholesterol 27-a-hydroxylase (CYP8B1), primarily
in peripheral tissues and in macrophages [12, 14-16].
(Fig. 1a). These primary bile acids are conjugated to gly-
cine or taurine (approximately 3:1 in humans) by Bile
acid CoA: amino acid N-acyltransferase (BAAT). These
conjugated bile acids are then absorbed by hepatocytes

Fig. 1 The synthesis of primary and secondary bile acids. a CDCA and CA are predominantly synthesized through the classical pathway

in the hepatic endoplasmic reticulum, contributing to more than 90% of total bile acid synthesis under normal physiological conditions. This
synthesis process is regulated by CYP7AT1, and CDCA is produced in the absence of CYP8B1. Subsequently, these primary bile acids are converted
into conjugated forms, primarily glycine or taurine-conjugated (in a 3:1 ratio in humans), with the assistance of BAAT. b Within the intestine,

BSH plays a predominant role in deconjugating bile acids (TCA, GCA, TCDCA, and GCDCA), converting them back into unconjugated forms.
Subsequently, 7-a-dehydroxylase enzymes catalyze the conversion of these unconjugated bile acids into DCA and LCA. Additionally, a minor
fraction of deoxycholic acid can be further converted into UDCA by intestinal bacteria’s 7-3-hydroxysteroid Dehydrogenase enzymes
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through bile salt export pump (BSEP) and multidrug
resistance-associated protein 2 (MRP2). They are stored
in the gallbladder, and later released into the intestine
during feeding [17-19]. About 95% of intestinal BA is
actively reabsorbed by intestinal cells from the distal
ileum through apical sodium-dependent transporter
(ASBT) or multidrug resistance-associated protein
3 (MRP3). Bile acids pass through intestinal epithe-
lial cells, facilitated by ileal bile acid binding protein
(IABP), to reach the basolateral membrane, and finally
pass through the heterodimer of organic solute trans-
porter o and f (OST a / OST PB) into the portal vein
circulation [12, 13, 17, 20]. Sodium-dependent tauro-
cholate cotransporting polypeptide (NTCP), located
in the hepatocyte basement membrane, is responsible
for facilitating sodium-dependent binding. Meanwhile,
organic anion transporter (OATP), also found in the
hepatocyte basement membrane, handles the uptake
of unconjugated BAs. Afterward, active transporters
within the hepatic sinusoid membrane of hepatocytes
efficiently clear these BAs. These newly dissociated
BAs are returned to the hepatocytes with newly formed
BAs and then secreted into the bile duct, a process
known as enterohepatic circulation [13, 14, 18] (Fig. 2).
Approximately 5% of bile salts escape this circulation
and are transformed by intestinal microflora. Bile salt
hydrolase enzymes (BSH) deconjugate bile salts, and
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7-a-dehydroxylase enzymes convert unconjugated
bile acids into deoxycholic acid (DCA) and lithocholic
acid (LCA). Some deoxycholic acid can be further con-
verted into ursodeoxycholic acid (UDCA) [16, 21, 22].
(Fig. 1b). Finally, the human bile acid pool primarily
consists of CA, CDCA, and DCA in a ratio of 40:40:20
[3, 16]. While in mice, it is mainly composed of Tau-
rocholic acid (TCA), T-B-muricholic acid, and T-a-
muricholic acid in a ratio of 60:40 (TCA: TMCA) [12,
14].

The discrepancy in bile acid composition between mice
and humans can primarily be attributed to the presence
of a species-specific sterol 6-B-hydroxylase enzyme,
Cyp2c70, exclusively found in mice. Notably, this enzyme
is absent in humans, limiting the conversion of CDCA
to a-muricholic acid (a-MCA) in the human hepatic
system [23]. In addition to the enzyme disparity, other
factors such as dietary structure, intestinal flora, and
genetic variations may contribute to the observed dif-
ferences. The interplay of BSH activity and ileal bile acid
binding protein further influences bile acid metabolism,
ultimately shaping the distinct bile acid profiles between
species [24, 25]. Therefore, when extrapolating findings
based on animal models, the applicability of changes in
bile acid metabolism in these models to the human sys-
tem must be carefully considered, especially in the con-
text of T2DM-like diseases. Further studies are needed

Portal vein

Distal ileum

Fig. 2 the enterohepatic circulation of BAs. Initially, primary BAs synthesized in the liver are stored in the gallbladder with the assistance of BSEP
and MRP2. In the distal ileum, roughly 95% of intestinal BAs are actively reabsorbed through ASBT and MRP3. Bile acids, facilitated by IABP,
traverse intestinal cells and then enter the portal circulation via OST a/OST {. In the hepatocyte basement membrane, NTCP and OATP transport
the absorbed BAs to the hepatic sinusoid through active transport mechanisms
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to fully understand the impact of species-specific bile
acid metabolism changes and their relevance to human

physiology.

Bile acid and type 2 diabetes mellitus

T2DM is a common disease characterized by abnormal
elevation of blood glucose. As mentioned earlier, insu-
lin resistance is considered to be the main pathogenesis
of T2DM [2, 5]. Insulin resistance in insulin-sensitive
tissues can lead to increased insulin secretion by pan-
creatic B-cells, but the final result is that B-cells cannot
meet the increased demand for insulin. Furthermore, oxi-
dative stress, autophagy and apoptosis of 3 cells change
the function of pancreatic islets [6, 7]. In animal experi-
ments and clinical studies, diabetes and insulin resistance
are associated with the increase of 12 a-hydroxylated
BA (CA/GCA/DCA) / non-12 o-hydroxylated BA
[26-30]. The reason for this may be that abnormally
elevated levels of glucose and insulin can promote his-
tone acetylation of CYP7A1 chromatin, thus stimulating
the synthesis of CYP7A1 and resulting in an increase in
12 a-hydroxylation BA production. Interestingly, altera-
tions in bile acid composition can, in turn, improve blood
glucose disorders. Animal experiments have shown that
oral TUDCA can enhance the insulin sensitivity in the
liver and skeletal muscle of insulin resistant mice [31]. In
a clinical study, it was found that the bile acid chelating
agent can improve blood glucose levels in T2DM patients
[32]. This mechanism potentially involves the intestinal
excretion of bile acids upon their binding with bile acid
chelating agents. This process effectively reduces the cir-
culating bile acid content within the enterohepatic cir-
culation. Subsequently, the decrease of the bile acid pool
stimulates the liver to up-regulate bile acid synthesis to
restore bile acid levels [33].

What’s interesting is that the profiles of BAs in
patients with T2DM vary across different studies. Some
studies have indicated that serum levels of primary
and secondary BAs are significantly higher in T2DM
patients compared to non-T2DM patients. Specifically,
TCDCA, TDCA, HDCA, GDCA and GLCA show sig-
nificant increases, while CA and TCA exhibit significant
decreases [3]. However, a limitation of this study is the
absence of stratified analysis based on the homeostatic
model assessment of insulin resistance (HOMA-IR)
value >2.5. A similar study found no significant difference
in total serum bile acid levels between the T2DM group
and the normal group. Still, this study revealed that the
levels of CA and DCA significantly increased after strati-
fication based on HOMA-IR>2.5 [34]. In summary, the
composition of BAs in T2DM patients requires further
analysis through additional clinical studies that consider
relevant factors such as age, sex, geographic location, the
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use of bile acid drugs (e.g., metformin), and metabolic
surgery [19, 35, 36].

Bile acids and diabetes drugs (metformin and acarbose)
Metformin is one of the commonly used drugs in the
treatment of T2DM, and its mechanism is complex. It
has gained increasing attention for its role in reducing
blood glucose and improving insulin sensitivity by affect-
ing bile acid metabolism. Some studies have shown that
in rat models of T2DM induced by Streptozocin (STZ)
injection, oral metformin can inhibit weight gain, reduce
CA synthesis, decrease the activity of CYP8B1, and ulti-
mately ameliorate insulin resistance [37]. Simultaneously,
it has been observed that metformin can enhance the
expression of FXR and Musculoaponeurotic fibrosarcoma
oncogene family protein G (MAFG) while inhibiting the
expression of CYP8B1 in HepG2 cells. In clinical studies
[35], metformin reduces blood glucose levels by increas-
ing the secretion of Glucagon-like peptide 1 (GLP-1), a
phenomenon confirmed in animal experiments. How-
ever, it’s worth noting that these studies do not measure
changes of BA concentrations. In addition, many studies
have reported that metformin can inhibit the expression
of the bile acid transporter BESP by activating cAMP-
PKA and cAMP-AMPK pathways, although it does not
appear to affect the expression of CYP7A1 [38-40]. This
implies that metformin may influence not only bile acid
synthesis, but also bile acid secretion and reuptake. How-
ever, it’s essential to mention that the majority of stud-
ies on the effects of metformin on BSEP have primarily
focused on non-alcoholic fatty liver disease, with limited
reports available in diabetic rat models.

Acarbose is an a-glucosidase inhibitor and is com-
monly used in the treatment of T2DM. There have been
relatively few studies on the effect of acarbose on BAs. In
a multicenter, randomized controlled clinical trial [41],
it was observed that the level of plasma secondary BAs
(mainly DCA) and taurine-conjugated BAs decreased
in patients with T2DM following treatment with acar-
bose. The mechanism behind this effect is that acarbose
increases the relative abundance of Lactobacillus and
Bifidobacterium while decreasing the relative abundance
of Bacteroides.

We have summarized the hypoglycemic mecha-
nisms and glucose outcomes of bile acid-related drugs,
as shown in Table 1. In these studies, BAs (CDCA [42,
43], TUDCA [31, 44, 45], HCA [46], GUDCA [47]), EXR
inhibitors (HS218[48], Gly-MCA [49, 50]), FXR agonists
(Fexaramine [51, 52], GW4064 [53, 54]), FXR/TGR5
agonists (INT-767 [55]), TGR5 agonists (INT-777 [52],
RO5527239 [52]), and clinical drugs (Colesevelam [56],
Metformin [37, 57, 58], Acarbose [41], Obeticholic acid
(OCA) [59-61]) all demonstrated hypoglycemic effects
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by activating different mechanisms. However, one study
found that blood glucose increased in mice treated with
GW4064 [62]. In fact, the increase in baseline blood glu-
cose and the measurement of blood glucose levels 2 h
postprandially may be influencing factors. Additionally,
NGM282 is an analogue of fibroblast growth factor 19
(FGF19), but it has not been found to reduce blood glu-
cose in clinical studies, indicating that FGF19 analogues
may have a significant inhibitory effect on hepatic glu-
cose synthesis, but may not directly affect glucose metab-
olism in other tissues or cells. This requires confirmation
in future studies [63].

Bile acids and bariatric metabolic surgery

Bariatric metabolic surgery can also achieve the effect
of treating T2DM by changing the composition of BAs
and improving insulin resistance [68-71]. However,
there is controversy regarding changes in bile acid con-
centration after metabolic surgery. Some studies have
found that the levels of CA, CDCA, TCA and total BAs
decreased significantly 3 months after sleeve gastrec-
tomy (SG), and the concentrations of CA and TCA still
decreased significantly 6 months after SG [72, 73]. Fur-
thermore, total BAs remained unchanged 6 months after
SG, while primary BAs, including glycine and taurine-
conjugated BAs, decreased [74]. In one study, serum C4
levels (a marker of bile acid synthesis) decreased from
23.4+21.1 ng/mL at baseline to 4.9+8.2,8.7+12.1,13.8 ¢
12.9 and 18.8+16.8 ng/mL at 1,3,6 and 12 months after
SG, suggesting a reduction in bile acid synthesis post-SG
[75]. However, other studies found that the total serum
BAs concentration increased more than threefold one
year after Roux-en-Y gastric bypass (RYGB) [76]. Many
studies suggested that the reason may be related to the
increase of Fibroblast growth factor 19 (FGF19) [8, 77].
We believe that the reason for this contradiction lies in
the duration of observation. A plausible explanation is
that bile acid concentration decreases in the short term
(1-3 months) after weight loss, but increases in the long
term (1-5 years) after surgery. A second explanation
could be the length of the intestinal loop, as different bar-
iatric surgeries will impact pathway of bile acid entering
the intestines, affecting bile acid recovery [78]. A third
explanation may be that variations in diets, gender and
ethnic backgrounds can also lead to diverse changes in
BAs following bariatric surgery. Eastern patients tend to
have higher initial TBA levels than Western patients, and
a high-fat diet decreases primary bile acid synthesis [69,
76]. Additionally, male T2DM patients exhibit decreased
TCA levels, while female patients experience reduced
CA and TCA levels [3]. These factors can undermine the
efficacy of weight loss and need to be taken into account.
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Furthermore, a patient’s history of cholecystectomy may
also affect bile acid reentry [79, 80].

Bile acid and intestinal flora

As mentioned earlier, the intestinal flora mediates sec-
ondary bile acid synthesis. The most typical manifesta-
tion is that human circulating serum BAs are composed
of CA, CDCA and DCA, whereas fecal BAs consist of
DCA and LCA [81]. Interestingly, bile acid can also
affect the composition of the intestinal flora. For exam-
ple, in patients with T2DM, the relative abundance of
Firmicutes decreased, and the relative abundance of Bac-
teroides increased [82]. Conversely, in rats fed with CA,
the relative abundance of Streptomyces increased, while
the relative abundance of Bacteroides and actinomy-
cetes decreased [64]. This suggests that BAs may affect
glucose metabolism by altering the composition of the
intestinal flora. However, the mechanism by which the
intestinal flora treats T2DM by influencing bile acid
metabolism is still unknown and may be related to FXR
and TGR5 [82, 83]. It has been found that acarbose can
induce an increase in CDCA, enhance FXR activity, and
simultaneously alter intestinal flora. However, their inter-
actions are not certain, so it’s unclear while changes in
the intestinal flora affect FXR activity [41]. Similarly, in
animal experiments, it was observed that the intestinal
flora after RYGB affected FXR and TGR5 by promoting
the production of taurine-conjugated Bas [84]. A notable
aspect of this study is the use of FXR inhibitor glycine-
B-muricholic acid (Gly-MCA) to block intestinal FXR
signals, which led to a reduction in the beneficial effects
of the intestinal flora on glucose homeostasis. Simulta-
neously, it was noted that the intestinal flora had no sig-
nificant impact on glucose tolerance and systemic insulin
resistance in TGR5~/~ mice. However, it's worth men-
tioning that this study used obese rat models induced by
a high-fat diet rather than the STZ-induced diabetic rat
model, and the rats’ blood glucose levels did not meet the
criteria for T2DM.

The interaction between BAs and the intestinal flora
plays a significant role in various physiological processes.
BAs have been found to modulate blood glucose levels
through multiple mechanisms, including alterations in
intestinal pH, changes in the composition of the intes-
tinal flora, and their impact on bacterial metabolites
such as short-chain fatty acids and lipopolysaccharides
[55, 61, 65]. On the other hand, the intestinal flora can
influence bile acid metabolism by affecting the activity
of enzymes such as BSH and 7-a-dehydroxylase, as well
as by regulating bile acid transporters and reabsorption
[16, 22]. While current research has primarily focused
on animal experiments to investigate the changes in the
intestinal flora following treatment with drugs that affect
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bile acid metabolism (such as FXR inhibitors, CA, OCA,
etc.), there is a need for more clinical studies due to the
inherent differences in dietary habits and genetic factors
between humans and mice. Further research is necessary
to understand the effects of BAs on the intestinal flora in
patients with T2DM and elucidate the underlying mecha-
nisms. Additionally, it is important to acknowledge that
comparing results from different methods of sequencing
the intestinal flora (such as high-throughput sequenc-
ing, metabolomics, and metagenomics) is scientifically
unsound. Therefore, future studies should compare the
strengths and limitations of these detection methods to
identify an appropriate approach for studying bile acid
metabolism.

Hypoglycemic mechanism of bile acid

The hypoglycemic mechanism of bile acid is complex.
Currently, the research is primarily focused on changes in
bile acid composition and the effects of the bile acid sign-
aling pathways on blood glucose. The pathways involved
include the BA-FXR-SHP pathway [48, 51, 53], BA-FXR-
FGFR15/19 pathway [77, 85, 86], BA-TGR5-GLP-1 path-
way [7, 87, 88] and BA-TGR5-cAMP pathway [43, 44,
52]. Through these various pathways, the ultimate out-
come is a modification in bile acid composition, a reduc-
tionin in the ratio of 12 a-hydroxylated BAs to non-12
a-hydroxylated BAs, an improvement in insulin resist-
ance, and a decrease in liver gluconeogenesis and insulin
sensitivity in adipose tissue. This is achieved by promot-
ing insulin secretion and increasing energy consumption.

FXR and bile acid

The nuclear receptor FXR is a member of the ligand-
activated nuclear receptors superfamily of transcription
factors. In humans, FXRa is highly expressed in the adre-
nal gland and liver, while FXRb is highly expressed in the
small intestine, large intestine and kidney [89]. Different
BAs have varying effects on the activation of FXR, with
the order of activation being CDCA>DCA>LCA>CA
[13]. FXR plays a pivotal role in regulating glucose
metabolism, impacting not only liver bile acid metabo-
lism but also BA secretion and intestinal absorption. As
the concentration of liver BAs increases due to intesti-
nal reabsorption, intestinal and liver FXR work together
to establish a dynamic balance in BAs by reducing bile
acid synthesis and promoting bile acid excretion [90].
In the liver, the activation of FXR by BAs upregulates
the expression of genes encoding the inhibitory nuclear
receptor small heterodimer partner (SHP), particularly,
with an increase in the bile acid pool size. SHP inhibits
the activation of several transcription factors, includ-
ing liver X receptor (LXR), liver receptor homologue-1
(LRH-1) and hepatic nuclear factor-4a (HNF-4«). This
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subsequently activates CYP7A1 in humans, inhibiting the
initial step of cholesterol catabolism [11]. LXR stimulates
bile acid synthesis by activating CYP7A1 transcription,
but its effects are overridden in the presence of SHP [91].
Moreover, FXR activated by bile acids can increase the
levels of MAFG, which subsequently inhibits CYP8BI in
mice. However, MAFG has no effect on CYP7A1. This
suggests that MAFG may regulate the ratio of CDCA
to CA, thereby controlling bile acid hydrophobicity (by
inhibiting CA synthesis without affecting CDCA synthe-
sis), but not the overallbile acid pool size [2, 13]. (Fig. 3a).

BAs promote insulin release, inhibit glucagon release
and reduce glucose output from the liver by activat-
ing FXR in pancreatic B cells [46, 55, 92]. SHP competes
with HNF-4 for binding, thus inhibiting the expression of
various genes involved in gluconeogenesis, glucose trans-
port and glycolysis. These genes include glucose-6-phos-
phatase (G6Pase) and phosphoenolpyruvate carboxylate
kinase (PEPCK), which play essential roles in inhibiting
liver gluconeogenesis, in particular, is the rate-limiting
enzyme of hepatic gluconeogenesis. This FXR-mediated
inhibition of key genes involved in glucose production
leads to improved liver glucose utilization and uptake
[48, 91, 93]. However, it should be noted that some data
have shown that BAs may upregulate PEPCK through
FXR [13, 18]. Furthermore, FXR plays a critical role in
maintaining the dynamic balance of glucose through its
direct interaction with the carbohydrate response ele-
ment binding protein (ChREBP). ChREBP is an impor-
tant transcription factor for glycolytic genes [19, 94]. In
the postprandial state, activated FXR reduces glycolysis,
promotes glycogen storage and inhibits de novo fat for-
mation by repressing the expression of L-type pyruvate
kinase. (Fig. 3b).

It has been observed that in intestinal-specific knock-
out mice (FXRAIN), treatments such as Gastric Bypass
with Ileal Interposition (GB-IL) or GS3672 [88, 95] did
not result in altered blood glucose levels. This phenom-
enon may be attributed to the inability to activate the
intestinal FXR signaling pathway, which does not alter
GLP-1 secretion. However, a separate study indicated
that, in comparison to FXR—/— mice, liver-specific
knockout mice (FXRAL) and intestinal-specific knockout
mice still exhibit metabolic effects following VSG [96].
This study revealed that in FXR*" and FEXR*™ mice, body
weight decreased and blood glucose levels reduced after
VSG, whereas these parameters remained unchanged in
EXR ™~ mice. This findings suggests that liver and intes-
tinal FXR knockout alone are insufficient to eliminate the
beneficial effects of VSG. Moreover, this study found that
the reduction in intestinal BA levels was not solely due
to FXR activation in the intestine and liver. After VSG,
Lactobacillus and Firmicutes were significantly increased
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Fig. 3 a dynamic balance of BAs. Intestinal and hepatic FXR work synergistically to regulate BAs, reducing their synthesis and promoting excretion.
Activation of hepatic FXR leads to an upregulation of SHP, which in turn inhibits various transcription factors, including LXR, LRH-1, and HNF-4q,
thereby impacting the activities of enzymes such as CYP7A1 and CYP8B1 involved in BA synthesis. Additionally, MAFG, influenced by FXR, may
affect the CDCA: CA ratio, thereby influencing the hydrophobicity of BAs without altering the overall BA pool size. b BAs regulate blood glucose
levels through FXR. BAs activate FXR within pancreatic 3 cells, which in turn promotes the release of insulin while inhibiting the release of glucagon
and the production of glucose in the liver. SHP competes with HNF-4q, thereby suppressing the expression of genes related to gluconeogenesis.
FXR’s direct interaction with ChREBP helps maintain glucose balance by reducing glycolysis and stimulating the storage of glycogen

following a meal

in FXR*' and EXR*™N mice but remained unchanged in
FXR-/- mice. Since Lactobacillus carries BSH and Firmi-
cutes carries 7-a-dehydroxylase, this leads to a decrease
in taurine-conjugated BAs in FXR*" and FXR*™ mice
after VSG. These observations suggests that there may
be more alternative pathways involved in BA metabolism
after VSG, such as increased intestinal permeability and
alterations in intestinal flora. These changes contribute to
a decrease in BA levels.

In addition, some studies have found variations in BA
changes across different regions when using the intesti-
nal-specific FXR receptor agonist Fexaramine [51]. In
general, this agonist increases the secretion of FGF15
and GLP-1, promoting insulin secretion and improving
glucose tolerance by activating FXR signal pathway. On
the contrary, the use of an intestinal-specific FXR recep-
tor inhibitor, Gly-MCA, reduces intestinal ceramide by
diminishing intestinal FXR signaling and inhibiting genes
related to ceramide synthesis. This reduction in ceramide
subsequently decreases hepatic endoplasmic reticu-
lum (ER) stress and the production of proinflammatory
cytokines, leading to improved blood glucose levels and
insulin resistance [49]. Interestingly, these two drugs with
completely opposite mechanisms yield similar results.

However, this phenomenon actually reflects the diverse
functions of intestinal FXR. It emphasizes the importance
of considering not only functional alterations in FXR, but
also potential changes in other mechanisms when inves-
tigating the relationship between BAs and FXR. Further-
more, it is crucial to determine whether FXR activation
or inactivation varies among different tissues. Previous
research has predominantly focused on mouse livers or
primary hepatocytes, with limited exploration in other
organs such as the intestine and kidney. Expanding the
scope of investigation to encompass various tissues will
provide a more comprehensive understanding of FXR’s
roles.

TGRS5 and bile acid

TGR5 is a member of the G-protein-coupled receptor
superfamily and is expressed in various tissues, includ-
ing pancreas p Cells, endocrine cells in the small intes-
tine, thyroid, brown adipose tissue, cardiomyocytes, and
macrophages [11, 13]. It is not expressed in hepatocytes,
but is instead located in sinusoidal endothelial cells
[89]. TGR5 can be activated by a variety of BAs. Differ-
ent BAs have varying abilities to activate TGR5 recep-
tors, with LCA being the most potent, followed by DCA,
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CDCA, and CA [97]. Some studies have found that INT-
767 can stimulate the secretion of glucagon-like pep-
tide-1(GLP-1) in TGR5'"mice, but not in FXR™ “mice,
indicating that FXR is necessary for GLP-1 secretion.
Subsequently, a FXR response element was discovered on
the promoter of the TGR5 gene, suggesting that FXR is
upstream of TGR5 [88, 98]. However, in the latest study,
only CA7S (a sulfated metabolite of bile acid) was found
to be increased in bile acid content in cecal contents after
SG. Different concentrations of CA7S, however, were
unable to activate endogenous FXR in human intestinal
Caco-2 cells, suggesting that CA7S may induce TGR5
expression through an independent FXR mechanism
[99].

TGR5 has been shown to induce the expression of
GLP-1,thereby promoting insulin secretion [46, 61, 100].
With the help of its cofactors «, f and y, TGR5 activates
the protein kinase A (PKA) signaling pathway by stimu-
lating adenylate cyclase, resulting in a rapid increase in
intracellular cyclic adenosine monophosphate (cAMP)
production. Then, the PKA pathway leads to the phos-
phorylation of the cAMP-response element-binding pro-
tein (CREB) and induces the expression of target genes
[43, 44, 52]. In the intestine, endocrine L cells activate
TGRS to increase GLP-1 secretion.GLP-1 promotes insu-
lin secretion by islet B cells and reduces glucagon secre-
tion by islet alpha cells in a glucose-dependent manner
[79, 101]. In addition to its glucose-dependent insulin-
promoting effect, GLP-1 also shares characteristics with
glucagon and induces a feeling of satiety [27, 102] (Fig. 4).
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In addition, BAs regulate metabolic processes by regu-
lating thermogenesis and increasing energy consump-
tion. One explanation is that TGR5 activates thyroid
hormones in brown adipose tissue and muscle cells by
stimulating type II iodothyronine deiodinase (DIO2)
[103]. The inactive thyroid hormone T4 is ultimately
transformed into its active form T3, through the activa-
tion of the BA-TGR5-cAMP-DIO2 signaling pathway.
This, in turn, increases peroxisome proliferator-activated
receptor-gamma coactivator-la (PGCl-a), stimulating
localized energy consumption [27, 47, 104]. However,
some studies have found that the triiodothyronine lev-
els in mice after RYGB did not differ from those before
surgery [103]. Another possible explanation currently
under investigation is that more BAs arrives in the colon
after metabolic surgery. This activation prompts intesti-
nal endocrine cells to activate the BA-TGR5-GLP-1 axis,
leading to increased GLP-1 release, which in turn facili-
tates muscle glucose absorption [87, 97, 105]. (Fig. 4).

In animal experiments, GW4064, an FXR agonist, have
been shown to reduce blood glucose levels and improve
insulin resistance by activating FXR and promoting
GLP-1 secretion [54, 106]. Similarly, TGR5 agonists have
exhibited similar effects [52]. However, in a rat intesti-
nal perfusion model [107], whether through intracavi-
tary perfusion or vascular perfusion, FXR agonists were
unable to stimulate GLP-1 secretion, contrary to previous
findings. Simultaneously, the TGR5 agonist RO6272296
had no effect on glucagon and insulin secretion in vitro
pancreatic perfusion. This may appear inconsistent with

Intestine

Muscle

(2) T——

Pancreas —)

Reduce blood glucose

Brown adipose
tissue

|

Energy consumption|

e

Fig. 4 TGR5 and Bas. (1) Activation of TGR5 by BAs induces the expression of GLP-1, promoting insulin secretion through the PKA-CREB pathway.
In the intestine, L cells activate TGRS, leading to increased GLP-1 secretion, regulation of glucose-dependent insulin and glucagon secretion,

and the induction of satiety. (2) BAs regulate metabolism by enhancing thermogenesis and energy consumption. TGR5 activates thyroid hormones
through DIO2, converting inactive T4 into its active form, T3, and increasing PGC1-a for local energy expenditure
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previous studies, but it was later discovered that TGR5
was not expressed in neither islet o cells and B cells,
which could explain this phenomenon. Despite these
conflicting experimental results, both TGR5 and FXR
agonists are generally considered beneficial for glucose
metabolism.

We have summarized the primary characteristics,
hypoglycemic mechanisms, and glucose outcomes of
FXR and TGR5 knockout models, as shown in Table 2.
When the same site in FXR knockout mice is subjected
to different treatment measures, varying results are
observed. Similarly, interventions of the same treatment
yield diverse outcomes in different parts of the body. The
potential reasons for these contradictions are as follows.
Firstly, there is a variation in tissue specificity. Differences
in the expression levels and regulatory mechanisms of
FXR in different tissues may lead to distinct responses to
the same treatment. Secondly, the complex nature of sig-
nal pathway mechanism plays a role. As a nuclear recep-
tor, FXR participates in intricate signal pathways and
transcriptional regulatory networks, resulting in poten-
tial cross-effects with other pathways and molecular
interactions that give rise to different outcomes. Thirdly,
discrepancies in experimental design and methods: dif-
ferences in experimental design, interventions and evalu-
ation criteria may also contribute to inconsistent results.
For instance, variations in intervention dose, timing and
experimental techniques can impact the results. In future
research, a comprehensive examination of FXR’s func-
tions and regulatory mechanisms across various tissues
and cell types will be crucial for a more precise under-
standing of its role in glucose metabolism. Additionally,
it is essential to consider potential interactions. Explor-
ing how FXR interacts with other signaling pathways and
molecules is necessary to uncover the intricate regulatory
networks that may help elucidate the currently contradic-
tory findings.

FGF15/19 and bile acid

FGF19 is a member of the hormone-like FGF protein
family, synthesized in the distal small intestine or ileum,
gallbladder and brain in humans, while FGF15 is synthe-
sized in mice [28, 114]. It has been reported that there is
a strong positive correlation between postprandial total
BAs and FGF19, possibly because BAs bind to FXR and
stimulate FGF19 synthesis [100]. FGF19 is released from
the distal small intestine, enters the portal vein circula-
tion, and acts on the liver. It follows a circadian rhythm,
with its peak occurring 90 to 120 min after the rise in
serum bile acid levels following meals [115]. Fibroblast
growth factor receptors (FGFRs) include FGFR1, FGFR2,
FGFR3 and FGFR4. FGF19 inhibits CYP7A1 by bind-
ing to FGFR4, thereby inhibiting BAs synthesis [32, 98].
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The first regulatory mechanism involves FGF19 binding
to FGFR4 on the plasma membrane of hepatocytes to
inhibit CYP7A1 transcription, mediated by c-Jun amino-
terminal kinase/extracellular signal-regulated kinase
(JNK/ERK). This is an effective SHP independent path-
way to inhibit CYP7A1 [51, 55, 62]. The second regula-
tory mechanism is that FGF19, with the help of B-Klotho
(KLB) in hepatocytes, directly activates SHP and inhibits
CYP7A1 by binding to FGFR4 [116]. (Fig. 5).

Clinical studies have revealed a negative linear cor-
relation between FGF19 levels and indicators of T2DM
severity (including Hemoglobin Alc (HbAlc) and
C-peptide levels) [115]. This correlation can be attributed
to several factors. Firstly, the increase in FGF19 levels
inhibits hepatic gluconeogenesis by suppressing the tran-
scriptional activity of CREB, which is a key regulator of
PGC-1la. Secondly, FGF19 demonstrates its hypoglyce-
mic effects by down-regulating the expression of glucose
6-phosphatase gene [28]. Lastly, FGF19 activates FGFR4/
B-Klotho in the liver, promoting glycogen synthesis and
inhibiting gluconeogenesis in the liver, as well as enhanc-
ing glucose disposal in adipose tissue [89, 104]. However,
some studies have suggested that the reduction in cir-
culating glucose levels and the improvement in glucose
tolerance in obese mice due to FGF-19 are unrelated to
insulin secretion. Instead, these effects are attributed to
reduced intestinal glucose uptake in the digestive limbs
lacking bile acids [7].

In addition, it has recently been considered that the
role of FGFR1 in fat and glucose metabolism cannot be
ignored. Within the pancreas, FGFR1 is primarily located
in B-cells, and a reduction in FGFR1 signaling can lead to
B-cell dysfunction. Studies have shown that FGFs-FGFRs
binding also activates PI3K/Akt pathway, which mediates
metabolism [116, 117].

Other pathway mechanisms and bile acids

In addition to acting on FXR and TGR5, BAs can also
regulate blood glucose and affect metabolism through
pregnane X receptor, constitutive androstane recep-
tor, vitamin D receptor and other receptors [118]. LCA
activates pregnane X receptor and vitamin D receptor,
binding to the BA response element-I sequence in the
CYP7A1 promoter to inhibit the activity of CYP7Al
promoter [14]. In rodent hepatocytes, DCA activates
epidermal growth factor receptor ERB1/ERB2 and insu-
lin receptor through PI3K/AKT/GSK3 signal pathway to
participate in the activation of glycogen synthase [13].
BAs can also perform many other biological functions
through non-receptor interactions, involving JNK1/2,
ERK1/2, Aktl/2 signal pathways, NO metabolism, and
cationic channel activation.
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Enterocyte

Hepatocyte

Reduce blood glucose

Fig.5 FGF15/19 and BAs. FGF19 inhibits BAs synthesis by binding

to FGFR4, thus blocking CYP7AT through two pathways:
SHP-independent inhibition via JNK/ERK and SHP-dependent
activation via KLB. FGF19 increases inhibits hepatic gluconeogenesis
via CREB and downregulates glucose 6-phosphatase gene
expression, while activating FGFR4/KLB promotes glycogen synthesis
and inhibits hepatic gluconeogenesis and adipose tissue glucose
disposal, contributing to its hypoglycemic effects

Obesity-induced endoplasmic reticulum (ER) stress has
been implicated in the development of insulin resistance
and T2DM [66]. Additionally, an increase in BAs follow-
ing weight loss may improve glucose regulation by miti-
gating ER stress in peripheral insulin-sensitive tissues.
A study demonstrated that ER stress signals in the liver,
adipose tissue, and pancreas decreased after undergoing
ileal transposition surgery [119]. Another study showed
that oral administration of TUDCA inhibited neointimal
proliferation in mouse vascular smooth muscle cells and
reduced ER stress in endothelial cells [73]. However, the
understanding of the relationship between BAs and ER
stress remains limited, and the underlying mechanisms
are not fully elucidated. Existing research suggests that
ER stress can lead to the upregulation of PERK, promot-
ing islet B-cell apoptosis, inhibiting insulin secretion, and
inducing insulin resistance [120, 121]. Conversely, BAs
can suppress the expression of ER stress-related proteins,
improve insulin resistance, and reduce blood glucose
levels by modulating the JNK signaling pathway [31, 66].
Due to the current lack of relevant research, future inves-
tigations should focus on two aspects: firstly, evaluating
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the effects and mechanisms of different types of BAs on
ER stress, which could provide valuable insights for the
development of hypoglycemic drugs. Secondly, assessing
whether there are variations in ER stress among differ-
ent tissues (e.g., liver, skeletal muscle, adipocytes), as this
could identify novel targets for the treatment of T2DM.

Impairment of bitter receptor function has been impli-
cated in the increased prevalence of T2DM, highlighting
the potential role of BAs, which are natural bitter sub-
stances, in glucose homeostasis. Activation of intestinal
bitter taste receptors has been shown to induce GLP-1
secretion, facilitate weight loss, and improve glucose tol-
erance in rodent models [122]. Previous studies have sug-
gested a possible connection between BAs and intestinal
bitter taste receptors. Certain drugs, including KDT501
[123], berberine [124], and Cucurbitacin B [125], have
been reported to activate bitter taste receptors and
stimulate GLP-1 secretion. Recent research has further
demonstrated the ability of LCA and TLCA to activate
intestinal bitter taste receptors [126]. Notably, LCA has
been found to activate Taste Receptor Type 2 Member 1
(TAS2R1) in humans at a concentration of 0.3 pM, while
TLCA activates TAS2R1, TAS2R14, and TAS2R46 at the
same concentration. In mice, TLCA activates TAS2108
at 1 uM, and TLCA activates TAS2144, whereas LCA
activates TAS2105 at 3 pM. These observations suggest
that human gut bitter taste receptors exhibit heightened
sensitivity to BAs. However, the underlying mechanism
of this activation remains elusive and warrants further
investigation, including the exploration of potential
involvement of the TGR5 pathway using TGR5 knock-
out mice. In summary, BAs, acting as natural bitter sub-
stances, have the capacity to activate receptors associated
with bitterness perception. The impairment of bitter
receptor function has been associated with an increased
risk of T2DM.

Conclusion

The relationship between bile acid metabolism and
T2DM has attracted much attention. In recent years, the
research in this field has made rapid progress, and the
content involved is more and more extensive. This review
mainly discusses the relationship between bile acid and
T2DM, summarizes the latest research, analyzes the
limitations of existing research and looks forward to the
future development trend.

Current studies have shown that BAs are a group of
natural compounds produced in the liver and excreted
through the intestines. BAs regulate insulin secretion,
liver glycogen synthesis and intestinal glucose absorption
by activating nuclear receptors such as FXR, TGR5 and
FGF15/19 signal transduction pathways, thus affecting
glucose metabolism and energy balance. The relationship
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between BAs and T2DM is also supported in some related
clinical studies. For example, data show that there is a signifi-
cant association between T2DM and serum BAs levels. Bile
acid replacement therapy has also been proved to be effec-
tive in the improvement of T2DM. We further discussed
the molecular mechanisms and signal transduction path-
ways of bile acid metabolism and T2DM. Investigating the
molecular mechanisms in T2DM pathogenesis enhance our
comprehension of bile acids’ influence on metabolic con-
trol. This includes alterations in intestinal flora composition,
regulation of genes associated with bile acid synthesis and
transport, and modulation of intestinal endocrine hormone
secretion. These processes subsequently impact glucose
metabolism.

Although the existing studies have preliminarily
revealed the relationship between bile acid and T2DM,
there are still some limitations. Firstly, due to the interac-
tion between bile acid metabolism and T2DM, it is not
clear whether the abnormal bile acid metabolism is the
cause or result of T2DM. Secondly, bile acid metabolism
is a complex mechanism involving multiple pathways.
Current studies mainly focus on the effects of bile acid on
FXR and TGRS5, ignoring other potential pathways such
as endoplasmic reticulum stress, bitter receptor, intesti-
nal flora and so on. At the same time, most studies mainly
explore the effects of bile acid on liver and intestinal tract,
ignoring the heart, kidney and brain tissue. Thirdly, the
experimental models of most studies are based on mice
or small-scale people, this method is limited to superfi-
cial understanding, and there are certain restrictions on
the generalization of conclusions. Fourthly, some studies
often lack the concept of personalized treatment, ignor-
ing the differences between different patients. Lastly,
some of the experimental results are contradictory, such
as in FXR knockout mice, the same site of gene knock-
out but the results are different. In addition, the change
of bile acid concentration during weight loss metabolic
surgery is also controversial.

In view of this, there are several potential approaches
for future research on BAs and T2DM. Firstly, for the
causal relationship between bile acid metabolism and
T2DM, Genome-Wide Association Studies and long-
term longitudinal studies with large samples can be con-
sidered. Secondly, further research on the mechanism can
focus on the relationship between bile acid and intestinal
flora, bitter receptor and endoplasmic reticulum stress, as
well as the effects of bile acid on heart, kidney and brain
tissue. Thirdly, to explore the differences in the efficacy
of bile acid therapy among different populations, such
as genetic variation or intestinal microflora, in order to
develop a more individualized treatment plan. Fourthly,
the potential side effects of bile acid therapy, such as gas-
trointestinal problems or abnormal liver function, need
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to be further studied and evaluated. Ensuring safety is
one of the important factors to promote the development
of this field. Fifthly, the development of new bile acid ana-
logues or bile acid receptor agonists may have a greater
hypoglycemic effect on patients. Lastly, strengthen the
multi-disciplinary cooperation of bile acid metabolism
and T2DM research, integrate the knowledge of genetics,
metabolism, intestinal microbiology, systems biology and
other disciplines, in order to deepen the overall under-
standing of its complex relationship.

Abbreviations

T2DM Type 2 diabetes mellitus

BA Bile acid

FXR Farnesoid X receptor

TGR5 G-protein-coupled bile acid receptor 5

CDCA Chenodeoxy cholic acid

CA Cholic acid

CYP7A1 Cholesterol 7 a-hydroxylase

Cc4 a-Hydroxy-4-cholesterol-3-one

CYP8B1 Cholesterol 12 a-hydroxylase

CYP27A1 Cytochrome P450 family 27 subfamily A member 1
BSEP Bile salt export pump

MRP2 Multidrug resistance-associated protein 2
ASBT Apical sodium-dependent bile acid transporter
MRP3 Multidrug resistance-associated protein 3

IABP lleal bile acid binding protein

OSTa/OSTR  Organic solute transporter o/

NTCP Sodium-dependent taurocholate cotransporting polypeptide
OATP Organic anion transporter

DCA Deoxycholic acid

LCA Lithocholic acid

BSH Bile salt hydrolase

UDCA Ursodeoxycholic acid

TCA Taurocholic acid

HOMA-IR Homeostatic model assessment of insulin resistance

MAFG Musculoaponeurotic fibrosarcoma oncogene family protein G
GLP-1 Glucagon-like peptide 1

AMPK AMP-activated protein kinase

SG Sleeve gastrectomy

FGF15/19 Fibroblast growth factor 15/19

RYGB Roux-en-Y gastric bypass

Gly-MCA Glycine-B-muricholic acid

SHP Small heterodimer partner

LXR Liver X receptor

LRH-1 Liver receptor homologue-1

HNF-4a Hepatic nuclear factor-4a

G6Pase Glucose-6-phosphatase

PEPCK Phosphoenolpyruvate carboxylate kinase

ChREBP Carbohydrate response element binding protein

FXRAIN Intestinal-specific FXR knockout mice

FXRAL Liver-specific FXR knockout mice

ER Endoplasmic reticulum

PKA Protein kinase A

cAMP Cyclic adenosine monophosphate

DIO2 Type Il iodothyronine deiodinase

PGC1-a Peroxisome proliferator-activated receptor-gamma coactiva-
tor 1-a

FGFRs Fibroblast growth factor receptors

JNK/ERK CJun amino terminal kinase/extracellular signal regulated
kinase

KLB -Klotho

PXR Pregnane X receptor

CAR Constitutive androstane receptor

VDR Vitamin D receptor

TAS2R Taste 2 receptor
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