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Abstract 

Bile acids, which are steroid molecules originating from cholesterol and synthesized in the liver, play a pivotal role 
in regulating glucose metabolism and maintaining energy balance. Upon release into the intestine alongside bile, 
they activate various nuclear and membrane receptors, influencing crucial processes. These bile acids have emerged 
as significant contributors to managing type 2 diabetes mellitus, a complex clinical syndrome primarily driven by insu-
lin resistance. Bile acids substantially lower blood glucose levels through multiple pathways: BA-FXR-SHP, BA-FXR-
FGFR15/19, BA-TGR5-GLP-1, and BA-TGR5-cAMP. They also impact blood glucose regulation by influencing intestinal 
flora, endoplasmic reticulum stress, and bitter taste receptors. Collectively, these regulatory mechanisms enhance 
insulin sensitivity, stimulate insulin secretion, and boost energy expenditure. This review aims to comprehensively 
explore the interplay between bile acid metabolism and T2DM, focusing on primary regulatory pathways. By examin-
ing the latest advancements in our understanding of these interactions, we aim to illuminate potential therapeutic 
strategies and identify areas for future research. Additionally, this review critically assesses current research limitations 
to contribute to the effective management of T2DM.

Keywords  Bile acid, Type 2 diabetes mellitus, Farnesoid X receptor, Takeda G-protein coupled receptor 5, Fibroblast 
growth factor 19

Introduction
Type 2 diabetes mellitus (T2DM) is a complex clinical 
syndrome characterized by disrupted glucose metabo-
lism, due to the interplay of genetic and environmental 
factors. The proportion of T2DM in patients with dia-
betes is estimated to be 90%-95% [1–3]. The escalating 

burden of T2DM poses significant challenges to public 
health, with nearly 500 million affected individuals world-
wide, and projections indicating a substantial increase in 
the future [4]. Insulin resistance and pancreatic β-cell 
dysfunction lie at the core of T2DM pathogenesis. Insulin 
resistance refers to the impaired response of target tis-
sues, including adipose, liver, and skeletal muscle, to the 
actions of insulin, leading to diminished glucose uptake. 
Simultaneously, β-cell dysfunction results in inadequate 
insulin secretion to compensate for insulin resistance, 
further contributing to hyperglycemia [1–3].

The etiology of T2DM involves intricate interactions 
between genetic and environmental factors. Genetic 
susceptibility, characterized by polymorphisms in genes 
related to insulin secretion, insulin action, and β-cell 
function, contributes to an increased predisposition to 

*Correspondence:
Jianli Han
hjl13803456545@126.com
Yong Meng
my176@126.com
1 Department of Oncology Surgery, Xi’an No.3 Hospital, The Affiliated 
Hospital of Northwest University, Xi’an 710018, Shanxi, People’s Republic 
of China
2 Department of General Surgery, Shanxi Bethune Hospital, Shanxi 
Academy of Medical Sciences, Third Hospital of Shanxi Medical University, 
Taiyuan 030032, Shanxi, People’s Republic of China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13098-023-01207-6&domain=pdf


Page 2 of 19Hou et al. Diabetology & Metabolic Syndrome          (2023) 15:235 

the disease. Environmental factors, such as sedentary 
lifestyles, unhealthy dietary patterns, and obesity, inter-
act synergistically with genetic factors, influencing the 
development of T2DM [2, 5]. Obesity plays a pivotal role 
in the pathogenesis of T2DM. Excessive adipose tissue, 
especially in visceral depots, induces a state of chronic 
low-grade inflammation and dysregulated secretion of 
adipokines, impairing insulin signaling pathways and 
exacerbating insulin resistance. Adipose tissue dysfunc-
tion further leads to the release of free fatty acids and 
adipokines, which contributes to peripheral tissue insulin 
resistance [6, 7].

Bile acids (BAs), synthesized from cholesterol in the 
liver and excreted into the bile, extend beyond their tradi-
tional role in fat absorption and cholesterol homeostasis. 
Emerging evidence suggests crucial involvement in meta-
bolic regulation. Acting as signaling molecules, BAs acti-
vate various receptors, including the farnesoid X receptor 
(FXR) and the G-protein-coupled bile acid receptor 5 
(TGR5), in the liver and peripheral tissues. Activation of 
these receptors exerts modulatory effects on glucose and 
lipid metabolism, enhances insulin sensitivity, and main-
tains energy homeostasis [8–10].

The intricate relationship between BAs and the patho-
genesis of T2DM has gained significant attention in 
recent research [11–13]. Targeting the bile acid signal-
ing pathways has emerged as a potential therapeutic 
strategy for T2DM management. Elucidating the precise 
mechanisms underlying the metabolic effects of BAs and 

exploring their therapeutic implications hold promise for 
innovative interventions in T2DM treatment.

Given the rising global prevalence of T2DM and the 
expanding recognition of BAs’ role in metabolic regula-
tion, comprehensive investigations into the fundamental 
mechanisms of T2DM pathogenesis and the therapeutic 
potential of bile acid signaling pathways are of utmost 
importance. Such research endeavors provide a platform 
for novel insights into T2DM management, fostering the 
development of innovative therapeutic approaches that 
hold the potential to enhance patient outcomes in this 
prevalent metabolic disorder.

Synthesis and recovery of Bile acid
Bile acids are byproducts of cholesterol primarily syn-
thesized in the liver, with about 0.4–0.6  g of the daily 
synthesized 1–1.5  g cholesterol converted into bile 
acids. This synthesis occurs through two pathways: the 
classical pathway and the alternative pathway. The clas-
sical pathway, responsible for over 90% of bile acid syn-
thesis, occurs in the hepatic endoplasmic reticulum and 
is mediated by cholesterol 7-α-hydroxylase (CYP7A1) 
[3, 13, 14]. In its absence, chenodeoxy cholic acid 
(CDCA) is produced. The acidic pathway is mediated 
by cholesterol 27-α-hydroxylase (CYP8B1), primarily 
in peripheral tissues and in macrophages [12, 14–16]. 
(Fig. 1a). These primary bile acids are conjugated to gly-
cine or taurine (approximately 3:1 in humans) by Bile 
acid CoA: amino acid N-acyltransferase (BAAT). These 
conjugated bile acids are then absorbed by hepatocytes 
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Fig. 1  The synthesis of primary and secondary bile acids. a CDCA and CA are predominantly synthesized through the classical pathway 
in the hepatic endoplasmic reticulum, contributing to more than 90% of total bile acid synthesis under normal physiological conditions. This 
synthesis process is regulated by CYP7A1, and CDCA is produced in the absence of CYP8B1. Subsequently, these primary bile acids are converted 
into conjugated forms, primarily glycine or taurine-conjugated (in a 3:1 ratio in humans), with the assistance of BAAT. b Within the intestine, 
BSH plays a predominant role in deconjugating bile acids (TCA, GCA, TCDCA, and GCDCA), converting them back into unconjugated forms. 
Subsequently, 7-α-dehydroxylase enzymes catalyze the conversion of these unconjugated bile acids into DCA and LCA. Additionally, a minor 
fraction of deoxycholic acid can be further converted into UDCA by intestinal bacteria’s 7-β-hydroxysteroid Dehydrogenase enzymes
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through bile salt export pump (BSEP) and multidrug 
resistance-associated protein 2 (MRP2). They are stored 
in the gallbladder, and later released into the intestine 
during feeding [17–19]. About 95% of intestinal BA is 
actively reabsorbed by intestinal cells from the distal 
ileum through apical sodium-dependent transporter 
(ASBT) or multidrug resistance-associated protein 
3 (MRP3). Bile acids pass through intestinal epithe-
lial cells, facilitated by ileal bile acid binding protein 
(IABP), to reach the basolateral membrane, and finally 
pass through the heterodimer of organic solute trans-
porter α and β (OST α / OST β) into the portal vein 
circulation [12, 13, 17, 20]. Sodium-dependent tauro-
cholate cotransporting polypeptide (NTCP), located 
in the hepatocyte basement membrane, is responsible 
for facilitating sodium-dependent binding. Meanwhile, 
organic anion transporter (OATP), also found in the 
hepatocyte basement membrane, handles the uptake 
of unconjugated BAs. Afterward, active transporters 
within the hepatic sinusoid membrane of hepatocytes 
efficiently clear these BAs. These newly dissociated 
BAs are returned to the hepatocytes with newly formed 
BAs and then secreted into the bile duct, a process 
known as enterohepatic circulation [13, 14, 18] (Fig. 2). 
Approximately 5% of bile salts escape this circulation 
and are transformed by intestinal microflora. Bile salt 
hydrolase enzymes (BSH) deconjugate bile salts, and 

7-α-dehydroxylase enzymes convert unconjugated 
bile acids into deoxycholic acid (DCA) and lithocholic 
acid (LCA). Some deoxycholic acid can be further con-
verted into ursodeoxycholic acid (UDCA) [16, 21, 22]. 
(Fig.  1b). Finally, the human bile acid pool primarily 
consists of CA, CDCA, and DCA in a ratio of 40:40:20 
[3, 16]. While in mice, it is mainly composed of Tau-
rocholic acid (TCA), T-β-muricholic acid, and T-α-
muricholic acid in a ratio of 60:40 (TCA: TMCA) [12, 
14].

The discrepancy in bile acid composition between mice 
and humans can primarily be attributed to the presence 
of a species-specific sterol 6-β-hydroxylase enzyme, 
Cyp2c70, exclusively found in mice. Notably, this enzyme 
is absent in humans, limiting the conversion of CDCA 
to α-muricholic acid (α-MCA) in the human hepatic 
system [23]. In addition to the enzyme disparity, other 
factors such as dietary structure, intestinal flora, and 
genetic variations may contribute to the observed dif-
ferences. The interplay of BSH activity and ileal bile acid 
binding protein further influences bile acid metabolism, 
ultimately shaping the distinct bile acid profiles between 
species [24, 25]. Therefore, when extrapolating findings 
based on animal models, the applicability of changes in 
bile acid metabolism in these models to the human sys-
tem must be carefully considered, especially in the con-
text of T2DM-like diseases. Further studies are needed 
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ASBT/MRP3 IABP/OSTα/OSTβ
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Fig. 2  the enterohepatic circulation of BAs. Initially, primary BAs synthesized in the liver are stored in the gallbladder with the assistance of BSEP 
and MRP2. In the distal ileum, roughly 95% of intestinal BAs are actively reabsorbed through ASBT and MRP3. Bile acids, facilitated by IABP, 
traverse intestinal cells and then enter the portal circulation via OST α/OST β. In the hepatocyte basement membrane, NTCP and OATP transport 
the absorbed BAs to the hepatic sinusoid through active transport mechanisms
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to fully understand the impact of species-specific bile 
acid metabolism changes and their relevance to human 
physiology.

Bile acid and type 2 diabetes mellitus
T2DM is a common disease characterized by abnormal 
elevation of blood glucose. As mentioned earlier, insu-
lin resistance is considered to be the main pathogenesis 
of T2DM [2, 5]. Insulin resistance in insulin-sensitive 
tissues can lead to increased insulin secretion by pan-
creatic β-cells, but the final result is that β-cells cannot 
meet the increased demand for insulin. Furthermore, oxi-
dative stress, autophagy and apoptosis of β cells change 
the function of pancreatic islets [6, 7]. In animal experi-
ments and clinical studies, diabetes and insulin resistance 
are associated with the increase of 12 α-hydroxylated 
BA (CA/GCA/DCA) / non-12 α-hydroxylated BA 
[26–30]. The reason for this may be that abnormally 
elevated levels of glucose and insulin can promote his-
tone acetylation of CYP7A1 chromatin, thus stimulating 
the synthesis of CYP7A1 and resulting in an increase in 
12 α-hydroxylation BA production. Interestingly, altera-
tions in bile acid composition can, in turn, improve blood 
glucose disorders. Animal experiments have shown that 
oral TUDCA can enhance the insulin sensitivity in the 
liver and skeletal muscle of insulin resistant mice [31]. In 
a clinical study, it was found that the bile acid chelating 
agent can improve blood glucose levels in T2DM patients 
[32]. This mechanism potentially involves the intestinal 
excretion of bile acids upon their binding with bile acid 
chelating agents. This process effectively reduces the cir-
culating bile acid content within the enterohepatic cir-
culation. Subsequently, the decrease of the bile acid pool 
stimulates the liver to up-regulate bile acid synthesis to 
restore bile acid levels [33].

What’s interesting is that the profiles of BAs in 
patients with T2DM vary across different studies. Some 
studies have indicated that serum levels of primary 
and secondary BAs are significantly higher in T2DM 
patients compared to non-T2DM patients. Specifically, 
TCDCA, TDCA, HDCA, GDCA and GLCA show sig-
nificant increases, while CA and TCA exhibit significant 
decreases [3]. However, a limitation of this study is the 
absence of stratified analysis based on the homeostatic 
model assessment of insulin resistance (HOMA-IR) 
value > 2.5. A similar study found no significant difference 
in total serum bile acid levels between the T2DM group 
and the normal group. Still, this study revealed that the 
levels of CA and DCA significantly increased after strati-
fication based on HOMA-IR > 2.5 [34]. In summary, the 
composition of BAs in T2DM patients requires further 
analysis through additional clinical studies that consider 
relevant factors such as age, sex, geographic location, the 

use of bile acid drugs (e.g., metformin), and metabolic 
surgery [19, 35, 36].

Bile acids and diabetes drugs (metformin and acarbose)
Metformin is one of the commonly used drugs in the 
treatment of T2DM, and its mechanism is complex. It 
has gained increasing attention for its role in reducing 
blood glucose and improving insulin sensitivity by affect-
ing bile acid metabolism. Some studies have shown that 
in rat models of T2DM induced by Streptozocin (STZ) 
injection, oral metformin can inhibit weight gain, reduce 
CA synthesis, decrease the activity of CYP8B1, and ulti-
mately ameliorate insulin resistance [37]. Simultaneously, 
it has been observed that metformin can enhance the 
expression of FXR and Musculoaponeurotic fibrosarcoma 
oncogene family protein G (MAFG) while inhibiting the 
expression of CYP8B1 in HepG2 cells. In clinical studies 
[35], metformin reduces blood glucose levels by increas-
ing the secretion of Glucagon-like peptide 1 (GLP-1), a 
phenomenon confirmed in animal experiments. How-
ever, it’s worth noting that these studies do not measure 
changes of BA concentrations. In addition, many studies 
have reported that metformin can inhibit the expression 
of the bile acid transporter BESP by activating cAMP-
PKA and cAMP-AMPK pathways, although it does not 
appear to affect the expression of CYP7A1 [38–40]. This 
implies that metformin may influence not only bile acid 
synthesis, but also bile acid secretion and reuptake. How-
ever, it’s essential to mention that the majority of stud-
ies on the effects of metformin on BSEP have primarily 
focused on non-alcoholic fatty liver disease, with limited 
reports available in diabetic rat models.

Acarbose is an α-glucosidase inhibitor and is com-
monly used in the treatment of T2DM. There have been 
relatively few studies on the effect of acarbose on BAs. In 
a multicenter, randomized controlled clinical trial [41], 
it was observed that the level of plasma secondary BAs 
(mainly DCA) and taurine-conjugated BAs decreased 
in patients with T2DM following treatment with acar-
bose. The mechanism behind this effect is that acarbose 
increases the relative abundance of Lactobacillus and 
Bifidobacterium while decreasing the relative abundance 
of Bacteroides.

We have summarized the hypoglycemic mecha-
nisms and glucose outcomes of bile acid-related drugs, 
as shown in Table  1. In these studies, BAs (CDCA [42, 
43], TUDCA [31, 44, 45], HCA [46], GUDCA [47]), FXR 
inhibitors (HS218[48], Gly-MCA [49, 50]), FXR agonists 
(Fexaramine [51, 52], GW4064 [53, 54]), FXR/TGR5 
agonists (INT-767 [55]), TGR5 agonists (INT-777 [52], 
RO5527239 [52]), and clinical drugs (Colesevelam [56], 
Metformin [37, 57, 58], Acarbose [41], Obeticholic acid 
(OCA) [59–61]) all demonstrated hypoglycemic effects 
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by activating different mechanisms. However, one study 
found that blood glucose increased in mice treated with 
GW4064 [62]. In fact, the increase in baseline blood glu-
cose and the measurement of blood glucose levels 2  h 
postprandially may be influencing factors. Additionally, 
NGM282 is an analogue of fibroblast growth factor 19 
(FGF19), but it has not been found to reduce blood glu-
cose in clinical studies, indicating that FGF19 analogues 
may have a significant inhibitory effect on hepatic glu-
cose synthesis, but may not directly affect glucose metab-
olism in other tissues or cells. This requires confirmation 
in future studies [63].

Bile acids and bariatric metabolic surgery
Bariatric metabolic surgery can also achieve the effect 
of treating T2DM by changing the composition of BAs 
and improving insulin resistance [68–71]. However, 
there is controversy regarding changes in bile acid con-
centration after metabolic surgery. Some studies have 
found that the levels of CA, CDCA, TCA and total BAs 
decreased significantly 3  months after sleeve gastrec-
tomy (SG), and the concentrations of CA and TCA still 
decreased significantly 6  months after SG [72, 73]. Fur-
thermore, total BAs remained unchanged 6 months after 
SG, while primary BAs, including glycine and taurine-
conjugated BAs, decreased [74]. In one study, serum C4 
levels (a marker of bile acid synthesis) decreased from 
23.4 ± 21.1 ng/mL at baseline to 4.9 ± 8.2,8.7 ± 12.1,13.8 ± 
12.9 and 18.8 ± 16.8 ng/mL at 1,3,6 and 12 months after 
SG, suggesting a reduction in bile acid synthesis post-SG 
[75]. However, other studies found that the total serum 
BAs concentration increased more than threefold one 
year after Roux-en-Y gastric bypass (RYGB) [76]. Many 
studies suggested that the reason may be related to the 
increase of Fibroblast growth factor 19 (FGF19) [8, 77]. 
We believe that the reason for this contradiction lies in 
the duration of observation. A plausible explanation is 
that bile acid concentration decreases in the short term 
(1–3 months) after weight loss, but increases in the long 
term (1–5  years) after surgery. A second explanation 
could be the length of the intestinal loop, as different bar-
iatric surgeries will impact pathway of bile acid entering 
the intestines, affecting bile acid recovery [78]. A third 
explanation may be that variations in diets, gender and 
ethnic backgrounds can also lead to diverse changes in 
BAs following bariatric surgery. Eastern patients tend to 
have higher initial TBA levels than Western patients, and 
a high-fat diet decreases primary bile acid synthesis [69, 
76]. Additionally, male T2DM patients exhibit decreased 
TCA levels, while female patients experience reduced 
CA and TCA levels [3]. These factors can undermine the 
efficacy of weight loss and need to be taken into account. 

Furthermore, a patient’s history of cholecystectomy may 
also affect bile acid reentry [79, 80].

Bile acid and intestinal flora
As mentioned earlier, the intestinal flora mediates sec-
ondary bile acid synthesis. The most typical manifesta-
tion is that human circulating serum BAs are composed 
of CA, CDCA and DCA, whereas fecal BAs consist of 
DCA and LCA [81]. Interestingly, bile acid can also 
affect the composition of the intestinal flora. For exam-
ple, in patients with T2DM, the relative abundance of 
Firmicutes decreased, and the relative abundance of Bac-
teroides increased [82]. Conversely, in rats fed with CA, 
the relative abundance of Streptomyces increased, while 
the relative abundance of Bacteroides and actinomy-
cetes decreased [64]. This suggests that BAs may affect 
glucose metabolism by altering the composition of the 
intestinal flora. However, the mechanism by which the 
intestinal flora treats T2DM by influencing bile acid 
metabolism is still unknown and may be related to FXR 
and TGR5 [82, 83]. It has been found that acarbose can 
induce an increase in CDCA, enhance FXR activity, and 
simultaneously alter intestinal flora. However, their inter-
actions are not certain, so it’s unclear while changes in 
the intestinal flora affect FXR activity [41]. Similarly, in 
animal experiments, it was observed that the intestinal 
flora after RYGB affected FXR and TGR5 by promoting 
the production of taurine-conjugated Bas [84]. A notable 
aspect of this study is the use of FXR inhibitor glycine-
β-muricholic acid (Gly-MCA) to block intestinal FXR 
signals, which led to a reduction in the beneficial effects 
of the intestinal flora on glucose homeostasis. Simulta-
neously, it was noted that the intestinal flora had no sig-
nificant impact on glucose tolerance and systemic insulin 
resistance in TGR5−/− mice. However, it’s worth men-
tioning that this study used obese rat models induced by 
a high-fat diet rather than the STZ-induced diabetic rat 
model, and the rats’ blood glucose levels did not meet the 
criteria for T2DM.

The interaction between BAs and the intestinal flora 
plays a significant role in various physiological processes. 
BAs have been found to modulate blood glucose levels 
through multiple mechanisms, including alterations in 
intestinal pH, changes in the composition of the intes-
tinal flora, and their impact on bacterial metabolites 
such as short-chain fatty acids and lipopolysaccharides 
[55, 61, 65]. On the other hand, the intestinal flora can 
influence bile acid metabolism by affecting the activity 
of enzymes such as BSH and 7-α-dehydroxylase, as well 
as by regulating bile acid transporters and reabsorption 
[16, 22]. While current research has primarily focused 
on animal experiments to investigate the changes in the 
intestinal flora following treatment with drugs that affect 
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bile acid metabolism (such as FXR inhibitors, CA, OCA, 
etc.), there is a need for more clinical studies due to the 
inherent differences in dietary habits and genetic factors 
between humans and mice. Further research is necessary 
to understand the effects of BAs on the intestinal flora in 
patients with T2DM and elucidate the underlying mecha-
nisms. Additionally, it is important to acknowledge that 
comparing results from different methods of sequencing 
the intestinal flora (such as high-throughput sequenc-
ing, metabolomics, and metagenomics) is scientifically 
unsound. Therefore, future studies should compare the 
strengths and limitations of these detection methods to 
identify an appropriate approach for studying bile acid 
metabolism.

Hypoglycemic mechanism of bile acid
The hypoglycemic mechanism of bile acid is complex. 
Currently, the research is primarily focused on changes in 
bile acid composition and the effects of the bile acid sign-
aling pathways on blood glucose. The pathways involved 
include the BA-FXR-SHP pathway [48, 51, 53], BA-FXR-
FGFR15/19 pathway [77, 85, 86], BA-TGR5-GLP-1 path-
way [7, 87, 88] and BA-TGR5-cAMP pathway [43, 44, 
52]. Through these various pathways, the ultimate out-
come is a modification in bile acid composition, a reduc-
tionin in the ratio of 12 α-hydroxylated BAs to non-12 
α-hydroxylated BAs, an improvement in insulin resist-
ance, and a decrease in liver gluconeogenesis and insulin 
sensitivity in adipose tissue. This is achieved by promot-
ing insulin secretion and increasing energy consumption.

FXR and bile acid
The nuclear receptor FXR is a member of the ligand-
activated nuclear receptors superfamily of transcription 
factors. In humans, FXRa is highly expressed in the adre-
nal gland and liver, while FXRb is highly expressed in the 
small intestine, large intestine and kidney [89]. Different 
BAs have varying effects on the activation of FXR, with 
the order of activation being CDCA > DCA > LCA > CA 
[13]. FXR plays a pivotal role in regulating glucose 
metabolism, impacting not only liver bile acid metabo-
lism but also BA secretion and intestinal absorption. As 
the concentration of liver BAs increases due to intesti-
nal reabsorption, intestinal and liver FXR work together 
to establish a dynamic balance in BAs by reducing bile 
acid synthesis and promoting bile acid excretion [90]. 
In the liver, the activation of FXR by BAs upregulates 
the expression of genes encoding the inhibitory nuclear 
receptor small heterodimer partner (SHP), particularly, 
with an increase in the bile acid pool size. SHP inhibits 
the activation of several transcription factors, includ-
ing liver X receptor (LXR), liver receptor homologue-1 
(LRH-1) and hepatic nuclear factor-4α (HNF-4α). This 

subsequently activates CYP7A1 in humans, inhibiting the 
initial step of cholesterol catabolism [11]. LXR stimulates 
bile acid synthesis by activating CYP7A1 transcription, 
but its effects are overridden in the presence of SHP [91]. 
Moreover, FXR activated by bile acids can increase the 
levels of MAFG, which subsequently inhibits CYP8B1 in 
mice. However, MAFG has no effect on CYP7A1. This 
suggests that MAFG may regulate the ratio of CDCA 
to CA, thereby controlling bile acid hydrophobicity (by 
inhibiting CA synthesis without affecting CDCA synthe-
sis), but not the overallbile acid pool size [2, 13]. (Fig. 3a).

BAs promote insulin release, inhibit glucagon release 
and reduce glucose output from the liver by activat-
ing FXR in pancreatic β cells [46, 55, 92]. SHP competes 
with HNF-4 for binding, thus inhibiting the expression of 
various genes involved in gluconeogenesis, glucose trans-
port and glycolysis. These genes include glucose-6-phos-
phatase (G6Pase) and phosphoenolpyruvate carboxylate 
kinase (PEPCK), which play essential roles in inhibiting 
liver gluconeogenesis, in particular, is the rate-limiting 
enzyme of hepatic gluconeogenesis. This FXR-mediated 
inhibition of key genes involved in glucose production 
leads to improved liver glucose utilization and uptake 
[48, 91, 93]. However, it should be noted that some data 
have shown that BAs may upregulate PEPCK through 
FXR [13, 18]. Furthermore, FXR plays a critical role in 
maintaining the dynamic balance of glucose through its 
direct interaction with the carbohydrate response ele-
ment binding protein (ChREBP). ChREBP is an impor-
tant transcription factor for glycolytic genes [19, 94]. In 
the postprandial state, activated FXR reduces glycolysis, 
promotes glycogen storage and inhibits de novo fat for-
mation by repressing the expression of L-type pyruvate 
kinase. (Fig. 3b).

It has been observed that in intestinal-specific knock-
out mice (FXRΔIN), treatments such as Gastric Bypass 
with Ileal Interposition (GB-IL) or GS3672 [88, 95] did 
not result in altered blood glucose levels. This phenom-
enon may be attributed to the inability to activate the 
intestinal FXR signaling pathway, which does not alter 
GLP-1 secretion. However, a separate study indicated 
that, in comparison to FXR−/− mice, liver-specific 
knockout mice (FXRΔL) and intestinal-specific knockout 
mice still exhibit metabolic effects following VSG [96]. 
This study revealed that in FXRΔL and FXRΔIN mice, body 
weight decreased and blood glucose levels reduced after 
VSG, whereas these parameters remained unchanged in 
FXR−/− mice. This findings suggests that liver and intes-
tinal FXR knockout alone are insufficient to eliminate the 
beneficial effects of VSG. Moreover, this study found that 
the reduction in intestinal BA levels was not solely due 
to FXR activation in the intestine and liver. After VSG, 
Lactobacillus and Firmicutes were significantly increased 
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in FXRΔL and FXRΔIN mice but remained unchanged in 
FXR-/- mice. Since Lactobacillus carries BSH and Firmi-
cutes carries 7-α-dehydroxylase, this leads to a decrease 
in taurine-conjugated BAs in FXRΔL and FXRΔIN mice 
after VSG. These observations suggests that there may 
be more alternative pathways involved in BA metabolism 
after VSG, such as increased intestinal permeability and 
alterations in intestinal flora. These changes contribute to 
a decrease in BA levels.

In addition, some studies have found variations in BA 
changes across different regions when using the intesti-
nal-specific FXR receptor agonist Fexaramine [51]. In 
general, this agonist increases the secretion of FGF15 
and GLP-1, promoting insulin secretion and improving 
glucose tolerance by activating FXR signal pathway. On 
the contrary, the use of an intestinal-specific FXR recep-
tor inhibitor, Gly-MCA, reduces intestinal ceramide by 
diminishing intestinal FXR signaling and inhibiting genes 
related to ceramide synthesis. This reduction in ceramide 
subsequently decreases hepatic endoplasmic reticu-
lum (ER) stress and the production of proinflammatory 
cytokines, leading to improved blood glucose levels and 
insulin resistance [49]. Interestingly, these two drugs with 
completely opposite mechanisms yield similar results. 

However, this phenomenon actually reflects the diverse 
functions of intestinal FXR. It emphasizes the importance 
of considering not only functional alterations in FXR, but 
also potential changes in other mechanisms when inves-
tigating the relationship between BAs and FXR. Further-
more, it is crucial to determine whether FXR activation 
or inactivation varies among different tissues. Previous 
research has predominantly focused on mouse livers or 
primary hepatocytes, with limited exploration in other 
organs such as the intestine and kidney. Expanding the 
scope of investigation to encompass various tissues will 
provide a more comprehensive understanding of FXR’s 
roles.

TGR5 and bile acid
TGR5 is a member of the G-protein-coupled receptor 
superfamily and is expressed in various tissues, includ-
ing pancreas β Cells, endocrine cells in the small intes-
tine, thyroid, brown adipose tissue, cardiomyocytes, and 
macrophages [11, 13]. It is not expressed in hepatocytes, 
but is instead located in sinusoidal endothelial cells 
[89]. TGR5 can be activated by a variety of BAs. Differ-
ent BAs have varying abilities to activate TGR5 recep-
tors, with LCA being the most potent, followed by DCA, 

BA
FXR

SHP

LXR LRH-1 HNF-4α

CYP7A1

MAFG

CYP8B1

(-)(-)

(-)

(-) (+)

(+)

Hepatocyte

BA
FXR

Reduce blood glucose

Pancreatic β cells Hepatocyte

SHP
(-)

G-6-P PEPCK ChREBP

a

b
Fig. 3  a dynamic balance of BAs. Intestinal and hepatic FXR work synergistically to regulate BAs, reducing their synthesis and promoting excretion. 
Activation of hepatic FXR leads to an upregulation of SHP, which in turn inhibits various transcription factors, including LXR, LRH-1, and HNF-4α, 
thereby impacting the activities of enzymes such as CYP7A1 and CYP8B1 involved in BA synthesis. Additionally, MAFG, influenced by FXR, may 
affect the CDCA: CA ratio, thereby influencing the hydrophobicity of BAs without altering the overall BA pool size. b BAs regulate blood glucose 
levels through FXR. BAs activate FXR within pancreatic β cells, which in turn promotes the release of insulin while inhibiting the release of glucagon 
and the production of glucose in the liver. SHP competes with HNF-4α, thereby suppressing the expression of genes related to gluconeogenesis. 
FXR’s direct interaction with ChREBP helps maintain glucose balance by reducing glycolysis and stimulating the storage of glycogen 
following a meal
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CDCA, and CA [97]. Some studies have found that INT-
767 can stimulate the secretion of glucagon-like pep-
tide-1(GLP-1) in TGR5−/−mice, but not in FXR−/−mice, 
indicating that FXR is necessary for GLP-1 secretion. 
Subsequently, a FXR response element was discovered on 
the promoter of the TGR5 gene, suggesting that FXR is 
upstream of TGR5 [88, 98]. However, in the latest study, 
only CA7S (a sulfated metabolite of bile acid) was found 
to be increased in bile acid content in cecal contents after 
SG. Different concentrations of CA7S, however, were 
unable to activate endogenous FXR in human intestinal 
Caco-2 cells, suggesting that CA7S may induce TGR5 
expression through an independent FXR mechanism 
[99].

TGR5 has been shown to induce the expression of 
GLP-1,thereby promoting insulin secretion [46, 61, 100]. 
With the help of its cofactors α, β and γ, TGR5 activates 
the protein kinase A (PKA) signaling pathway by stimu-
lating adenylate cyclase, resulting in a rapid increase in 
intracellular cyclic adenosine monophosphate (cAMP) 
production. Then, the PKA pathway leads to the phos-
phorylation of the cAMP-response element-binding pro-
tein (CREB) and induces the expression of target genes 
[43, 44, 52]. In the intestine, endocrine L cells activate 
TGR5 to increase GLP-1 secretion.GLP-1 promotes insu-
lin secretion by islet β cells and reduces glucagon secre-
tion by islet alpha cells in a glucose-dependent manner 
[79, 101]. In addition to its glucose-dependent insulin-
promoting effect, GLP-1 also shares characteristics with 
glucagon and induces a feeling of satiety [27, 102] (Fig. 4).

In addition, BAs regulate metabolic processes by regu-
lating thermogenesis and increasing energy consump-
tion. One explanation is that TGR5 activates thyroid 
hormones in brown adipose tissue and muscle cells by 
stimulating type II iodothyronine deiodinase (DIO2) 
[103]. The inactive thyroid hormone T4 is ultimately 
transformed into its active form T3, through the activa-
tion of the BA-TGR5-cAMP-DIO2 signaling pathway. 
This, in turn, increases peroxisome proliferator-activated 
receptor-gamma coactivator-1α (PGC1-α), stimulating 
localized energy consumption [27, 47, 104]. However, 
some studies have found that the triiodothyronine lev-
els in mice after RYGB did not differ from those before 
surgery [103]. Another possible explanation currently 
under investigation is that more BAs arrives in the colon 
after metabolic surgery. This activation prompts intesti-
nal endocrine cells to activate the BA-TGR5-GLP-1 axis, 
leading to increased GLP-1 release, which in turn facili-
tates muscle glucose absorption [87, 97, 105]. (Fig. 4).

In animal experiments, GW4064, an FXR agonist, have 
been shown to reduce blood glucose levels and improve 
insulin resistance by activating FXR and promoting 
GLP-1 secretion [54, 106]. Similarly, TGR5 agonists have 
exhibited similar effects [52]. However, in a rat intesti-
nal perfusion model [107], whether through intracavi-
tary perfusion or vascular perfusion, FXR agonists were 
unable to stimulate GLP-1 secretion, contrary to previous 
findings. Simultaneously, the TGR5 agonist RO6272296 
had no effect on glucagon and insulin secretion in vitro 
pancreatic perfusion. This may appear inconsistent with 

ATPcAMP

PKA(1)
GLP-1

BA

TGR5

Pancreas

Intestine

Reduce blood glucose

AC

DIO2(2)

(1)
(2)

Muscle

Brown adipose 
tissue

Energy consumption

Fig. 4  TGR5 and Bas. (1) Activation of TGR5 by BAs induces the expression of GLP-1, promoting insulin secretion through the PKA-CREB pathway. 
In the intestine, L cells activate TGR5, leading to increased GLP-1 secretion, regulation of glucose-dependent insulin and glucagon secretion, 
and the induction of satiety. (2) BAs regulate metabolism by enhancing thermogenesis and energy consumption. TGR5 activates thyroid hormones 
through DIO2, converting inactive T4 into its active form, T3, and increasing PGC1-α for local energy expenditure
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previous studies, but it was later discovered that TGR5 
was not expressed in neither islet α cells and β cells, 
which could explain this phenomenon. Despite these 
conflicting experimental results, both TGR5 and FXR 
agonists are generally considered beneficial for glucose 
metabolism.

We have summarized the primary characteristics, 
hypoglycemic mechanisms, and glucose outcomes of 
FXR and TGR5 knockout models, as shown in Table  2. 
When the same site in FXR knockout mice is subjected 
to different treatment measures, varying results are 
observed. Similarly, interventions of the same treatment 
yield diverse outcomes in different parts of the body. The 
potential reasons for these contradictions are as follows. 
Firstly, there is a variation in tissue specificity. Differences 
in the expression levels and regulatory mechanisms of 
FXR in different tissues may lead to distinct responses to 
the same treatment. Secondly, the complex nature of sig-
nal pathway mechanism plays a role. As a nuclear recep-
tor, FXR participates in intricate signal pathways and 
transcriptional regulatory networks, resulting in poten-
tial cross-effects with other pathways and molecular 
interactions that give rise to different outcomes. Thirdly, 
discrepancies in experimental design and methods: dif-
ferences in experimental design, interventions and evalu-
ation criteria may also contribute to inconsistent results. 
For instance, variations in intervention dose, timing and 
experimental techniques can impact the results. In future 
research, a comprehensive examination of FXR’s func-
tions and regulatory mechanisms across various tissues 
and cell types will be crucial for a more precise under-
standing of its role in glucose metabolism. Additionally, 
it is essential to consider potential interactions. Explor-
ing how FXR interacts with other signaling pathways and 
molecules is necessary to uncover the intricate regulatory 
networks that may help elucidate the currently contradic-
tory findings.

FGF15/19 and bile acid
FGF19 is a member of the hormone-like FGF protein 
family, synthesized in the distal small intestine or ileum, 
gallbladder and brain in humans, while FGF15 is synthe-
sized in mice [28, 114]. It has been reported that there is 
a strong positive correlation between postprandial total 
BAs and FGF19, possibly because BAs bind to FXR and 
stimulate FGF19 synthesis [100]. FGF19 is released from 
the distal small intestine, enters the portal vein circula-
tion, and acts on the liver. It follows a circadian rhythm, 
with its peak occurring 90 to 120  min after the rise in 
serum bile acid levels following meals [115]. Fibroblast 
growth factor receptors (FGFRs) include FGFR1, FGFR2, 
FGFR3 and FGFR4. FGF19 inhibits CYP7A1 by bind-
ing to FGFR4, thereby inhibiting BAs synthesis [32, 98]. 

The first regulatory mechanism involves FGF19 binding 
to FGFR4 on the plasma membrane of hepatocytes to 
inhibit CYP7A1 transcription, mediated by c-Jun amino-
terminal kinase/extracellular signal-regulated kinase 
(JNK/ERK). This is an effective SHP independent path-
way to inhibit CYP7A1 [51, 55, 62]. The second regula-
tory mechanism is that FGF19, with the help of β-Klotho 
(KLB) in hepatocytes, directly activates SHP and inhibits 
CYP7A1 by binding to FGFR4 [116]. (Fig. 5).

Clinical studies have revealed a negative linear cor-
relation between FGF19 levels and indicators of T2DM 
severity (including Hemoglobin A1c (HbA1c) and 
C-peptide levels) [115]. This correlation can be attributed 
to several factors. Firstly, the increase in FGF19 levels 
inhibits hepatic gluconeogenesis by suppressing the tran-
scriptional activity of CREB, which is a key regulator of 
PGC-1α. Secondly, FGF19 demonstrates its hypoglyce-
mic effects by down-regulating the expression of glucose 
6-phosphatase gene [28]. Lastly, FGF19 activates FGFR4/ 
β-Klotho in the liver, promoting glycogen synthesis and 
inhibiting gluconeogenesis in the liver, as well as enhanc-
ing glucose disposal in adipose tissue [89, 104]. However, 
some studies have suggested that the reduction in cir-
culating glucose levels and the improvement in glucose 
tolerance in obese mice due to FGF-19 are unrelated to 
insulin secretion. Instead, these effects are attributed to 
reduced intestinal glucose uptake in the digestive limbs 
lacking bile acids [7].

In addition, it has recently been considered that the 
role of FGFR1 in fat and glucose metabolism cannot be 
ignored. Within the pancreas, FGFR1 is primarily located 
in β-cells, and a reduction in FGFR1 signaling can lead to 
β-cell dysfunction. Studies have shown that FGFs-FGFRs 
binding also activates PI3K/Akt pathway, which mediates 
metabolism [116, 117].

Other pathway mechanisms and bile acids
In addition to acting on FXR and TGR5, BAs can also 
regulate blood glucose and affect metabolism through 
pregnane X receptor, constitutive androstane recep-
tor, vitamin D receptor and other receptors [118]. LCA 
activates pregnane X receptor and vitamin D receptor, 
binding to the BA response element-I sequence in the 
CYP7A1 promoter to inhibit the activity of CYP7A1 
promoter [14]. In rodent hepatocytes, DCA activates 
epidermal growth factor receptor ERB1/ERB2 and insu-
lin receptor through PI3K/AKT/GSK3 signal pathway to 
participate in the activation of glycogen synthase [13]. 
BAs can also perform many other biological functions 
through non-receptor interactions, involving JNK1/2, 
ERK1/2, Akt1/2 signal pathways, NO metabolism, and 
cationic channel activation.
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Obesity-induced endoplasmic reticulum (ER) stress has 
been implicated in the development of insulin resistance 
and T2DM [66]. Additionally, an increase in BAs follow-
ing weight loss may improve glucose regulation by miti-
gating ER stress in peripheral insulin-sensitive tissues. 
A study demonstrated that ER stress signals in the liver, 
adipose tissue, and pancreas decreased after undergoing 
ileal transposition surgery [119]. Another study showed 
that oral administration of TUDCA inhibited neointimal 
proliferation in mouse vascular smooth muscle cells and 
reduced ER stress in endothelial cells [73]. However, the 
understanding of the relationship between BAs and ER 
stress remains limited, and the underlying mechanisms 
are not fully elucidated. Existing research suggests that 
ER stress can lead to the upregulation of PERK, promot-
ing islet β-cell apoptosis, inhibiting insulin secretion, and 
inducing insulin resistance [120, 121]. Conversely, BAs 
can suppress the expression of ER stress-related proteins, 
improve insulin resistance, and reduce blood glucose 
levels by modulating the JNK signaling pathway [31, 66]. 
Due to the current lack of relevant research, future inves-
tigations should focus on two aspects: firstly, evaluating 

the effects and mechanisms of different types of BAs on 
ER stress, which could provide valuable insights for the 
development of hypoglycemic drugs. Secondly, assessing 
whether there are variations in ER stress among differ-
ent tissues (e.g., liver, skeletal muscle, adipocytes), as this 
could identify novel targets for the treatment of T2DM.

Impairment of bitter receptor function has been impli-
cated in the increased prevalence of T2DM, highlighting 
the potential role of BAs, which are natural bitter sub-
stances, in glucose homeostasis. Activation of intestinal 
bitter taste receptors has been shown to induce GLP-1 
secretion, facilitate weight loss, and improve glucose tol-
erance in rodent models [122]. Previous studies have sug-
gested a possible connection between BAs and intestinal 
bitter taste receptors. Certain drugs, including KDT501 
[123], berberine [124], and Cucurbitacin B [125], have 
been reported to activate bitter taste receptors and 
stimulate GLP-1 secretion. Recent research has further 
demonstrated the ability of LCA and TLCA to activate 
intestinal bitter taste receptors [126]. Notably, LCA has 
been found to activate Taste Receptor Type 2 Member 1 
(TAS2R1) in humans at a concentration of 0.3 µM, while 
TLCA activates TAS2R1, TAS2R14, and TAS2R46 at the 
same concentration. In mice, TLCA activates TAS2108 
at 1  µM, and TLCA activates TAS2144, whereas LCA 
activates TAS2105 at 3  µM. These observations suggest 
that human gut bitter taste receptors exhibit heightened 
sensitivity to BAs. However, the underlying mechanism 
of this activation remains elusive and warrants further 
investigation, including the exploration of potential 
involvement of the TGR5 pathway using TGR5 knock-
out mice. In summary, BAs, acting as natural bitter sub-
stances, have the capacity to activate receptors associated 
with bitterness perception. The impairment of bitter 
receptor function has been associated with an increased 
risk of T2DM.

Conclusion
The relationship between bile acid metabolism and 
T2DM has attracted much attention. In recent years, the 
research in this field has made rapid progress, and the 
content involved is more and more extensive. This review 
mainly discusses the relationship between bile acid and 
T2DM, summarizes the latest research, analyzes the 
limitations of existing research and looks forward to the 
future development trend.

Current studies have shown that BAs are a group of 
natural compounds produced in the liver and excreted 
through the intestines. BAs regulate insulin secretion, 
liver glycogen synthesis and intestinal glucose absorption 
by activating nuclear receptors such as FXR, TGR5 and 
FGF15/19 signal transduction pathways, thus affecting 
glucose metabolism and energy balance. The relationship 

BA
FXR

(+)

FGF15/FGF19

FGFR4

(-)

ERK

JNK

CYP7A1

(+)

SHP

(-)

Reduce blood glucose

(-) (-)

CREB G-6-P

Hepatocyte

Enterocyte

Fig. 5  FGF15/19 and BAs. FGF19 inhibits BAs synthesis by binding 
to FGFR4, thus blocking CYP7A1 through two pathways: 
SHP-independent inhibition via JNK/ERK and SHP-dependent 
activation via KLB. FGF19 increases inhibits hepatic gluconeogenesis 
via CREB and downregulates glucose 6-phosphatase gene 
expression, while activating FGFR4/KLB promotes glycogen synthesis 
and inhibits hepatic gluconeogenesis and adipose tissue glucose 
disposal, contributing to its hypoglycemic effects
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between BAs and T2DM is also supported in some related 
clinical studies. For example, data show that there is a signifi-
cant association between T2DM and serum BAs levels. Bile 
acid replacement therapy has also been proved to be effec-
tive in the improvement of T2DM. We further discussed 
the molecular mechanisms and signal transduction path-
ways of bile acid metabolism and T2DM. Investigating the 
molecular mechanisms in T2DM pathogenesis enhance our 
comprehension of bile acids’ influence on metabolic con-
trol. This includes alterations in intestinal flora composition, 
regulation of genes associated with bile acid synthesis and 
transport, and modulation of intestinal endocrine hormone 
secretion. These processes subsequently impact glucose 
metabolism.

Although the existing studies have preliminarily 
revealed the relationship between bile acid and T2DM, 
there are still some limitations. Firstly, due to the interac-
tion between bile acid metabolism and T2DM, it is not 
clear whether the abnormal bile acid metabolism is the 
cause or result of T2DM. Secondly, bile acid metabolism 
is a complex mechanism involving multiple pathways. 
Current studies mainly focus on the effects of bile acid on 
FXR and TGR5, ignoring other potential pathways such 
as endoplasmic reticulum stress, bitter receptor, intesti-
nal flora and so on. At the same time, most studies mainly 
explore the effects of bile acid on liver and intestinal tract, 
ignoring the heart, kidney and brain tissue. Thirdly, the 
experimental models of most studies are based on mice 
or small-scale people, this method is limited to superfi-
cial understanding, and there are certain restrictions on 
the generalization of conclusions. Fourthly, some studies 
often lack the concept of personalized treatment, ignor-
ing the differences between different patients. Lastly, 
some of the experimental results are contradictory, such 
as in FXR knockout mice, the same site of gene knock-
out but the results are different. In addition, the change 
of bile acid concentration during weight loss metabolic 
surgery is also controversial.

In view of this, there are several potential approaches 
for future research on BAs and T2DM. Firstly, for the 
causal relationship between bile acid metabolism and 
T2DM, Genome-Wide Association Studies and long-
term longitudinal studies with large samples can be con-
sidered. Secondly, further research on the mechanism can 
focus on the relationship between bile acid and intestinal 
flora, bitter receptor and endoplasmic reticulum stress, as 
well as the effects of bile acid on heart, kidney and brain 
tissue. Thirdly, to explore the differences in the efficacy 
of bile acid therapy among different populations, such 
as genetic variation or intestinal microflora, in order to 
develop a more individualized treatment plan. Fourthly, 
the potential side effects of bile acid therapy, such as gas-
trointestinal problems or abnormal liver function, need 

to be further studied and evaluated. Ensuring safety is 
one of the important factors to promote the development 
of this field. Fifthly, the development of new bile acid ana-
logues or bile acid receptor agonists may have a greater 
hypoglycemic effect on patients. Lastly, strengthen the 
multi-disciplinary cooperation of bile acid metabolism 
and T2DM research, integrate the knowledge of genetics, 
metabolism, intestinal microbiology, systems biology and 
other disciplines, in order to deepen the overall under-
standing of its complex relationship.
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