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High-fat diet feeding significantly attenuates
anagliptin-induced regeneration of islets of
Langerhans in streptozotocin-induced
diabetic mice
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Abstract

Background: DPP-4 inhibitors reportedly exert effects on both alpha and beta cells, and promote the proliferation
and survival of beta cells. We investigated the effects of anagliptin on structurally-impaired islets of Langerhans in
streptozotocin (STZ)-treated mice, fed either a normal or a high-fat diet. Pdx-1 expression in the pancreas and
serum insulin/glucagon concentrations were also examined.

Findings: Anagliptin treatment significantly up-regulated pancreatic Pdx-1 expression, with elevated serum
glucagon-like peptide-1 concentrations, regardless of whether the diet was normal or high-fat. However, interestingly,
the beta cell regeneration, structural normalization of islets of Langerhans including alpha cell: beta cell area ratios, and
serum insulin elevation, all observed with anagliptin administration in the animals fed a normal diet, were markedly
suppressed in the high-fat fed group.

Conclusions: High-fat diet feeding clearly weakened the regenerative effects of anagliptin on the islets of
Langerhans in STZ-treated mice. Our findings suggest the importance of normalizing lipid metabolism for full
manifestation of DPP-4 inhibitor effects on the islets of Langerhans.

Keywords: DPP-4 inhibitor, Anagliptin, Streptozotocin, High-fat diet, Islet of Langerhans
Background
Dipeptidyl peptidase 4 (DPP-4) inhibitors were devel-
oped to enhance glucose-induced insulin secretion by
prolonging the activities of incretins such as gastric in-
hibitory polypeptide (GIP) and glucagon-like peptide-1
(GLP-1). Many reports have also presented data suggest-
ing that DPP-4 inhibitors induce beta cell proliferation
and promote survival, while suppressing glucagon secre-
tion [1–3]. However, it is unclear whether or not the
proliferative effect of DPP-4 inhibitors on beta cells
observed in rodent models is also significant in human
diabetic subjects.
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In this study, first, using streptozotocin (STZ)-treated
mice we showed that anagliptin induced regeneration of
beta cells and structural recovery of pancreatic islets of
Langerhans. Then, we examined whether or not the
effects of anagliptin are exerted regardless of whether
the diet is high-fat (HFD) or normal.
Methods
Materials
Anagliptin was provided by Sanwa Kagaku Kenkyusho
Co., Ltd. The antibodies against insulin, glucagon, Ki67
and Hoechst were purchased from Cell Signaling Tech-
nology (Beverly, MA, USA) and Abcam (Cambridge, UK).
Anti-rabbit and anti-mouse horseradish peroxidase-
conjugated antibodies were obtained from GE Healthcare
(Buckinghamshire, UK). All other reagents were of analyt-
ical grade.
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Animals
C57BL/6J male mice obtained from The Jackson Labora-
tory (Bar Harbor, ME, USA) were housed under climate-
controlled conditions with a 12:12-h light–dark cycle and
were provided standard food or high-fat chow and water
ad libitum. All protocols were approved by the Institutional
Review Board of Hiroshima University.

Creating and sustaining STZ-induced diabetes in mice
After a 16 h fast, 6-week-old C57BL/6J mice were
injected with 200 mg/kg body weight STZ (Wako,
Tokyo, Japan; freshly made in 0.1 M citrate buffer,
pH 4.5) to induce severe diabetes. After a week, the mice
with blood glucose levels exceeding 400 mg/dl were
selected and divided into 4 groups (n = 6 each group),
which were then fed normal chow (AIN-93 M, 76 %
carbohydrate, 15 % protein and 9 % fat), normal chow
premixed with 0.3 %(w/w) anagliptin (NA), high-fat
chow (HFD-60, 7.5 % carbohydrate, 24.5 % protein and
60 % fat), or high-fat chow premixed with 0.3 %(w/w)
anagliptin (HA) for 10 weeks. All chows were produced
by Oriental Yeast Co., Ltd. (Tokyo, Japan). To prevent
severe hyperglycemia caused by insulin deficiency, all
mice were subcutaneously injected with Lantus® (Sanofi
K.K., Tokyo, Japan) from 50 to 100 IU/g body weight,
decided according to their blood glucose levels, once per
day. All mice were sacrificed for subsequent analysis
24 h after the final Lantus® administration.
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Fig. 1 Effects of anagliptin on serum GLP-1, insulin, glucagon and beta-cel
mice were determined by ELISA. b–e The expressions of Pdx-1, MafA, Neur
measured by real-time PCR. Data were calculated as values relative to the c
g Serum glucagon concentrations were measured by ELISA. Quantitative d
*P < 0.05, Student’s t-test
Immunohistochemical analysis
Extirpated pancreases from the mice treated with STZ
and anagliptin, fed the normal diet or the HFD, were
fixed in 4 % paraformaldehyde for 48 h and subsequently
embedded in paraffin. Pancreatic sections from mice
given phosphate buffered saline alone served as controls.
Sections were immune-labeled with rabbit anti-glucagon
or anti-Ki67 followed by mouse anti-insulin. Digital im-
ages were captured with a fluorescence microscope BZ-
9000 equipped with image analysis application (KEY-
ENCE, Osaka, Japan). The insulin-positive beta cell:
glucagon-positive cell area ratios were calculated by
digitizing images captured through the 20-fold objective
lens using ImageJ software. Images of 5 randomly
chosen fields were captured from each pancreatic
section.

Measurement of mRNA expression by real-time PCR
Total RNA was isolated using Sepazol-RNA 1 (NakaLai
Tesque, Kyoto, Japan), and 1 μg of RNA was reverse
transcribed with Transcriptor Reverse Transcriptase
(Roche Applied Science, Basel, Switzerland). The ampli-
fication reaction assay was performed using SYBR Pre-
mix Ex Taq (TaKaRa, Shiga, Japan) according to the
manufacturer’s protocol. The primers were as follows:
mouse forward pancreatic and duodenal homeobox 1
(Pdx-1) 5′-CATCTCCCCATACGAAGTGC-3′, mouse
Pdx-1 reverse 5′-GGGGCCGGGAGATGTATTTG-3′;
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ata from 6 independent experiments are presented as bar graphs.
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mouse musculoaponeurotic fibrosarcoma oncogene
family proteins A (MafA) forward 5′-TTCAGCAAG-
GAGGAGGTCAT-3′, mouse MafA reverse 5′-CCGCC
AACTTCTCGTATTTC-3′; mouse NeuroD forward 5′-
CTTGGCCAAGAACTACATCTGG-3′, mouse NeuroD
reverse 5′-GGAGTAGGGATGCACCGGGAA-3′; mouse
NK6 homeodomain 1 (Nkx6.1) forward 5′-CTGCACAG
TATGGCCGAGATG-3′, mouse Nkx6.1 reverse 5′-CC
GGGTTATGTGAGCCCAA-3′; mouse GAPDH forward
5′-TGACGTGCCGCCTGGAGAAA-3′, mouse GAPDH
reverse 5′-AGTGTAGCCCAAGATGCCCTTCAG-3′.
Post-PCR melting curves confirmed the specificity of
single-target amplification. Fold changes in the expres-
sions of Pdx-1 relative to GAPDH were determined in
triplicate.
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Fig. 2 Characteristics of mice in each group. a Body weight change during
to determine fasting glucose levels. b Fasting glucose level after a 16 h fas
per day during the final week was calculated. e Caloric intake of one mous
content of the each chow per gram (NF = 3802.7, HF = 5062 kcal/kg). f Epid
independent experiments are presented as bar graphs. *P < 0.05, Student’s
ELISA
Serum insulin, glucagon (Yanaihara Institute Inc., Shizuoka,
Japan) and GLP-1 (Wako) concentrations were measured
using ELISA kits according to the manufacturers’ instruc-
tions. Absorbance at 450 nm was determined using a mi-
croplate reader (Bio-Rad Laboratories, Hercules, CA, USA).

Statistical analysis
Data are expressed as means ± SE. Statistical analyses were
performed using Student’s t-test. Values of P < 0.05 were
considered to indicate a statistically significant difference.

Results
Serum GLP-1 concentrations rose with anagliptin treat-
ment, with no difference being observed between the
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normal diet and HFD groups (Fig. 1a). Similarly, expression
levels of Pdx-1, MafA, NeuroD and Nkx6.1, beta-cell
markers reportedly associated with beta cell proliferation,
differentiation, insulin production and homeostasis [4–6],
were also up-regulated in the anagliptin-treated mice,
regardless of whether the diet was normal or high-fat
(Fig. 1b–e). On the other hand, serum insulin was signifi-
cantly elevated by anagliptin in the normal diet fed mice
but not in those receiving the HFD (Fig. 1f). Furthermore,
serum glucagon was decreased by anagliptin in those given
the normal diet, but the magnitude of this reduction was
smaller in the HFD fed mice (Fig. 1g). HFD groups showed
significantly increased body weight as compared with the
normal diet groups (Fig. 2a). After a 16 h fast, among the 4
groups, NA had significantly lower plasma glucose (Fig. 2b).
Blood glucose was lower, but not significantly, in NA than
in the other three groups (Fig. 2c). Food intakes did not
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Fig. 3 Effects of anagliptin on islet cell ratios and Ki67 expression in STZ-tre
glucagon antibody in the normal controls and each of the STZ-treated gro
and glucagon/insulin positive area ratios (lower) of each STZ-treated group
with Ki67 or insulin antibody in each group. f Relative Ki67-insulin double posit
from 6 independent experiments are presented as bar graphs. *P< 0.05, Studen
differ among the groups (Fig. 2d) but caloric intake was
higher in the HFD than in the normal diet groups (Fig. 2e).
Epididymal adipose tissue weight was markedly increased
in HFD mice but anagliptin significantly blunted this eleva-
tion (Fig. 2f).
Subsequently, islet insulin and glucagon positive areas

were determined by immunostaining with anti-insulin
and anti-glucagon antibodies, respectively (Fig. 3a). Ana-
gliptin was found to markedly increase the insulin-
positive cell area in the pancreases of STZ-treated mice
fed a normal diet, while these increases were smaller in
the HFD fed mice (Fig. 3b). On the other hand, only
glucagon-positive cell areas decreased in the STZ-treated
mice fed a normal diet, with no such change in the mice
fed a HFD (Fig. 3c). Additionally, Ki67 expression in beta
cells was significantly increased in the NA group islets
(Fig. 3e and Additional file 1: Figure S1). Therefore, the
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glucagon positive cell area: insulin positive cell area ratios
showed regeneration only in the mice fed a normal diet
(Fig. 3d).

Discussion
Islets of Langerhans features reflect the severity and the
stage of diabetes. A compensatory increase in insulin
secretion due to insulin resistance is observed in the
impaired-glucose-tolerance stage and in the very early
stage of Type 2 diabetes mellitus (DM) [7–9]. As in Type 1
DM, in the advanced stage of Type 2 DM with hypergly-
cemia, the beta cell mass is usually reduced [10, 11], while
that of alpha cells is unchanged or even increased [12, 13].
Thus, a drug reversing these impairments of the islets of
Langerhans, achieving regeneration of beta cells, would be
an ideal therapy for both forms of DM.
While DPP-4 inhibitors were initially developed to en-

hance glucose secretion in response to insulin, recent
studies have revealed effects on not only beta cells but
also alpha cells, i.e. these drugs suppress glucagon secre-
tion [3, 14]. In addition, many studies employing in vitro
techniques and experiments using rodent models have
suggested DPP-4 inhibitors to suppress apoptosis as well
as promoting the proliferation of beta cells [1, 15].
Herein, we clearly demonstrated that anagliptin reversed

the degeneration of islets of Langerhans in STZ-treated
mice, based on up-regulation of mRNA levels of the beta
cell markers Pdx-1, MafA, NeuroD and Nkx6.1. On the
other hand, these improvements were significantly blunted
in HFD fed mice, although serum GLP-1 levels and pan-
creatic beta cell marker expressions were increased, to
similar extents, in both normal diet and HFD fed mice. We
speculate that lipotoxicity caused by the HFD may have
suppressed the favorable effects exerted by anagliptin on
beta cells. Yet other reports have shown that increased
active GLP-1 functions in beta cells, promoting their prolif-
eration in response to DPP-4 inhibitor administration,
resulting in improved beta cell functions such as insulin
secretion [2, 3, 14, 16]. Additionally, some reports have
shown that insulin glargine induced phosphorylations of
mitogenic factor Akt and p44/p42 MAPK in several cell
lines, suggesting effects of Lantus® on beta cell proliferation
[6]. Glucagon secretion from alpha cells is reportedly
suppressed by GLP-1 [17] and insulin [18]. Despite the
observed up-regulation of Pdx-1 expression, the pathway
downstream from Pdx-1 in beta cells may be impaired by
lipotoxicity [19]. In addition, recent reports have shown
the development of insulin resistance in not only beta but
also alpha cells via accumulated ER stress induced by satu-
rated fatty acids, cytokines and so on [20–22].
In conclusion, our findings demonstrate the DPP-4

inhibitor anagliptin to strongly promote recovery from
the STZ-induced destruction of Langerhans beta cells,
but that this effect is weakened under HFD conditions.
Although there are considerable differences between hu-
man diabetes and the STZ-treated mice used in this
study, our results suggest the potential importance of
ameliorating metabolic abnormalities, such as hyperlipid-
emia, for DPP-4 inhibitors to fully manifest their favorable
effects on the islets of Langerhans such as promoting beta
cell proliferation.

Additional file

Additional file 1: Figure S1. Islet immunohistochemical images stained
with insulin, Ki67 and Hoechst antibodies. Islet sections were co-stained with
insulin and Ki67 antibodies, and then incubated with Hoechst and immune
labeled with secondary antibodies. Insulin and Ki67 double-positive cells are
indicated with arrows. Scale bar = 50 μm.
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