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Abstract

Background: eSS is a rat model of type 2 diabetes characterized by fasting hyperglycemia, glucose intolerance,
hyperinsulinemia and early hypertriglyceridemia. Diabetic symptoms worsen during the second year of life as
insulin release decreases. In 12-month-old males a diffuse hepatic steatosis was detected. We report the
disturbances of lipid metabolism of the model with regard to the diabetic syndrome.

Methods: The study was conducted in eight 12-month-old eSS male rats and seven age/weight matched
eumetabolic Wistar rats fed with a complete commercial diet al libitum. Fasting plasmatic glucose, insulin,
triglycerides, total cholesterol, low-density and high-density lipoprotein, and nonesterified fatty acids levels were
measured. Very low density and intermediate-density lipoproteins were analyzed and hepatic lipase activity was
determined.

Results: eSS rats developed hyperglycemia and hyperinsulinemia, indicating insulin resistance. Compared with
controls, diabetic rats exhibited high plasmatic levels of NEFA, triglycerides (TG), total cholesterol (Chol) and LDL-
Chol while high-density lipoprotein (HDL) cholesterol values were reduced. eSS rats also displayed TG-rich VLDL
and IDL particles without changes in hepatic lipase activity.

Conclusion: The nonobese eSS rats develop a syndrome characterized by glucose and lipid disorders and hepatic
steatosis that may provide new opportunities for studying the pathogenesis of human type 2 diabetes.

Background
Diabetes mellitus extensively alters lipid metabolism
and, in turn, dyslipidemia appears to play an integral
role in the development of impaired insulin secretion
[1]. Since increased plasmatic triglycerides and
decreased high-density lipoprotein are risk factors of
coronary heart disease, these changes are relevant to
prognosis with serious consequences in terms of mor-
bidity and mortality [2,3], particularly in those patients
with long-lasting diabetes [4].
The eSS rat is a spontaneously diabetic model obtained

in Rosario, Argentina, by genetic manipulation; the gen-
eration has been described in detail by Martinez et al
[5]. eSS rats develop a mild type 2-diabetes not related to
obesity with higher expression in males [5,6]. Until 12
months of age, progressive rising values of fasting hyper-
glycemia and glucose intolerance are accompanied by

higher levels of circulating insulin indicating resistance to
the hormone [5,6]. In 5-month-old males, increased
plasma triglycerides levels were verified before the onset
of fasting hyperglycemia [7,8]. During the second year of
life, as hyperglycemia severely worsens, insulin release
decreases, islets display a marked disruption of the archi-
tecture and the percentage of b cells diminishes [5,6]. In
12-month-old eSS males we reported hepatic steatosis
with a pattern of lipid deposits similar to the one
observed in biopsies of type 2 diabetic patients [9].
Taking advantage of the naturally slow progress of the

metabolic derangement in this model and the conse-
quent long-life-span of the eSS rats, we have performed
the study of lipid metabolic alterations in 12-month-old
rats analyzing their role in this spontaneous type 2 dia-
betic syndrome and its complications.

Methods
Subjects
Eight 12-month-old eSS male rats and seven eumeta-
bolic Wistar (W) rats, paired by age and sex, were
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studied. eSS is an inbred rat maintained in the School of
Medicine, Rosario University, Rosario, Argentina.
W came from the animal breeding facilities in the School
of Biochemical Science, Rosario University. Breeding
conditions were the same for all the animals, including
temperature regulation (24°C) and light-darkness cycles
as well as artificial air exchange. In all the cases, the
individuals had remained housed since they were
21 days old, in hanging collective cages. All animals
were fed on a complete commercial diet, special for
laboratory rats, and water was ad libitum . These
experimental conditions were maintained until the ani-
mals were euthanized. All experimental procedures
presented in this study were approved by the Bioethics
Commission of School of Medicine, which assures
adherence to the standards by the Guide for the Care
and Use of Laboratory Animals.

Experimental procedures
Hepatic lipase (HL) activity was measured in post-
heparin plasma obtained from femoral artery under
sodium thiopental anesthesia (0.35 ml/100 g body
weight of 0.5% solution). Heparin (6 IU/100 g body
weight) was injected through the femoral vein and after
10 minutes, blood samples were taken, immediately cen-
trifuged for 10 minutes at
-4°C (2,500 rpm) and stored at -20°C until the deter-

mination of enzymatic activity. The animals were
stitched and housed in individual cages for 48 hours for
their recovery.
After 10-hs overnight fast, all animals were exsangui-

nated by cardiac puncture under deep sodium thiopental
anesthesia. Disodium EDTA (1.5 mg/ml) and sodium
azide (0.1 mg/ml) were added to inhibit lipid peroxida-
tion and degradation of lipoproteins and bacterial
growth. Samples were centrifuged within two hours of
blood collection and the plasma kept at 4°C. Within 48
hours, it was split into two aliquots: one was used for
the determination of fasting plasmatic glucose (G0),
insulin (I0), triglycerides (TG), total cholesterol (Chol),
low-density lipoprotein (LDL)-Chol, high-density lipo-
protein (HDL)-Chol, and free fatty acids (NEFA); the
other sample was employed for separation and analysis

of very-low-density lipoproteins (VLDL) and intermedi-
ate-density lipoproteins (IDL).
VLDL and IDL were isolated from plasma by sequential

ultracentrifugation at 15°C and 105000 × g for 20 h, at
densities of 1.006 and 1.025 g/ml respectively. After cen-
trifugation, the lipoproteins were carefully recovered in
the supernatant by tubeslicing. The chemical composition
of the fractions was evaluated by measuring Chol, TG,
phospholipids (PL) and proteins (Pro). VLDL size was
estimated by triglyceride/protein (TG/Pro) ratio. Chol
versus TG ratio (Chol/TG) was examined in VLDL and
IDL in order to estimate the degree of lipolytic process.
G0, TG, and Chol concentrations were measured

enzymatically by commercial kits (Wiener Lab, Argen-
tina). PL concentration was determined using the Bar-
tlett assay; total proteins were measured by the Lowry
method using a commercial standard kit of bovine
serum albumin (Sigma A 6003; Chemical Company).
NEFA levels were evaluated by a standardized enzymatic
method (Boehringer Mannheim Lab). Intra-trial varia-
tion coefficient for Chol was lower than 3%; for TG it
was lower than 4%; for HDL-Chol it was 4.3%; for LDL-
Chol it was 4.7% and for NEFA it was 3%. Plasmatic
Insulin concentration was quantified by radioimmunoas-
say (RIA) using rat NIH insulin as standard. Hepatic
lipase (HL) activity was measured according to Francone
et al modified method [10]. Intra-trial variation coeffi-
cient for HL activity measurement was 8%.

Statistical analyses
The results are presented as the mean ± 1 standard
error of mean (SD). Statistical significance was deter-
mined by Student’s test. P value less than 0.05 (p <
0.05) was accepted as statistically significant.

Results
As seen in Table 1, eSS rats displayed higher levels of
G0 and could be considered as being severely hypergly-
cemic, according to DeFronzo et al (>140 mg/dl)
[11], whereas controls remained euglycemic. However,
I0 values in eSS were higher than those of W. The
Table also indicates that diabetic rats presented greater
levels of NEFA and of TG than those of controls. In

Table 1 Body weight, fasting glycemia, insulinemia, triglyceridemia, free fatty acids, cholesterolemia and lipoproteins
in diabetic eSS rats and in euglycemic Wistar rats.

Rats Bw
(g)

G0
(mg/dl)

I0
(μU/ml)

NEFA
(mmol/l)

TG
(mg/dl)

Chol
(mg/dl)

LDL-
Chol

HDL-
Chol

eSS (n = 8) 421 ± 9.13 165 ± 15.5 38 ± 4.6 1.35 ± 0.07 228 ± 24.5 105 ± 9 44.2 ± 7.8 15.2 ± 0.95

W(n = 7) 424 ± 29.4 99 ± 1.5 20 ± 3.6 0.89 ± 0.02 97 ± 5.5 57 ± 2.16 14.2 ± 7.8 23.1 ± 0.88

p NS <0.001 <0.05 <0.001 <0.001 <0.001 <0.001 <0.001

Body weight (Bw), basal plasma glucose (G0), basal plasma insulin (I0), plasmatic triglycerides (TG), free fatty acids (NEFA), total plasma cholesterol (Chol), low-
density lipoprotein (LDL)-Chol, high-density lipoprotein (HDL)-Chol, Wistar controls (W).
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eSS, plasma Chol and LDL-Chol concentrations were
also higher albeit HDL-Chol levels were lower. Body
weight was similar in both eSS rats and Wistar rats.
TG percentage composition of VLDL was higher in eSS

rats (eSS: 67.4 ± 6.5% vs. W: 45.9 ± 2.8%; p < 0.001). TG/
Pro ratio provides an estimate of the VLDL size and indi-
cated that in diabetic rats VLDL particles were signifi-
cantly larger (eSS: 7.68+3.63 vs. W: 1.79+0.35; p < 0.001);
Chol/TG ratio of VLDL was lower in eSS (eSS: 0.08 ±
0.007 vs. W: 0.11 ± 0.008, p < 0.001).
As seen in Table 2, when considering IDL composition,

eSS rats presented a higher proportion of TG and a lower
of PL, as compared with controls. While in control rats
Chol/TG ratio increased in IDL with respect to VLDL
(VLDL: 0.11 ± 0.021 vs. IDL: 0.19 ± 0.006; p < 0.001), in
eSS rats this proportion remained almost unchanged
(VLDL: 0.08 ± 0.19 vs. IDL: 0.072 ± 0.043; p > 0.05);
Chol/TG ratio of IDL was lower in eSS (eSS: 0.072+0.043
vs. W: 0.19+0.006; p < 0.001).
Regarding HL activity, differences were not verified

between diabetic rats and controls (eSS: 19.5 ± 0.07
μmol fatty acids/ml PPH vs. W: 20.6 ± 1.4 μmol fatty
acids/ml PPH; p < 0.05).

Discussion
Plasmatic triglyceride values obtained in one-year-old
eSS rats indicate hypertriglyceridemia (>200 mg/dl)
according to the diagnostic criteria from International
Lipid Information Bureau [12]. Hypertriglyceridemia is a
common finding in patients with altered tolerance to
glucose and in type 2 diabetic patients, since the high
proportion of TG in VLDL is one of the main compo-
nents of diabetic dyslipidemia [13,14]. These findings
along with increased LDL-Chol and decreased HDL-
Chol levels in eSS rats in relation to the controls, sug-
gest that diabetic animals present a mixed or combined
dyslipidemia with a IV phenotype, according to Fre-
drickson’s classification adopted by WHO in 1970 [15].
Albeit 12-month-old eSS rats had an excess of fasting

insulin, these animals were unable to normalize blood
glucose levels indicating insulin resistance [16,17]. In
previous studies we described that 5 month-old eSS
males had already developed hypertriglyceridemia
and hyperinsulinemia although they remained

normoglycemic in fasting state [5,7]. These results point
out that in eSS rats fasting hyperglycemia would be a
later stage in the sequence of events from insulin resis-
tance to overt diabetes, whilst the insulin resistance
affects the lipid metabolism beforehand.
Because elevated plasmatic NEFA levels has been

implied as a causative factor of insulin resistance by
interfering with glucose cellular uptake and by stimulat-
ing the hepatic neoglucogenesis [18,19], attention should
be exerted in the elevated NEFA concentrations verified
in eSS rats. Moreover, chronic high NEFA plasma levels
might be a pathogenic factor involved in both progres-
sive decreasing insulin secretion and lowered percentage
of b cells detected in eSS rats during the second year of
life [5]. Several studies have proposed that chronic expo-
sure to high NEFA induces beta cell dysfunction and
beta-cell death by apoptosis [20,21]). The excess of cir-
culating NEFA causes ectopic fat deposition and the
activation of multiple inflammatory pathways with intra-
cellular accumulation of toxic lipid-derived metabolites
[22]. Interestingly, we have verified in 12 month-old eSS
males a pattern of lipidic deposits in hepatocytes similar
to the one observed in type 2 diabetic patients as well as
a close association between hyperglycemia values and
lipid peroxidation [9]. We suggest that in eSS rats the
hepatic steatosis should be closely related to insulin
resistance, to increased circulating NEFA [23] and to
oxidative stress [24]. The hepatic steatosis of eSS rats
should increase triglycerides, reduce HDL levels, and
increases small, dense LDL [25], and it should be
strongly associated with overproduction of large TGL-
rich and protein-poor VLDL particles [26,27], a central
pathophysiologic feature of the abnormal lipid profile in
both human and experimental type 2 diabetes mellitus
[28,29]. Insulin resistance of eSS rats could increase the
hepatic uptake of fatty acids released by lipolysis of adi-
pose tissue, the intrahepatic synthesis of triglycerides
and the overproduction and secretion of VLDL particles
that, in turn, leads to the increased plasma levels of TG.
New experiments should be undertaken by measuring
the hepatic microsomal transfer protein (MTP) mRNA
and protein levels together with the measurement of TG
synthesis by the liver after Triton X-100 infusion. These
experiments are crucial to brighten the genesis of hyper-
triglyceridemia and hepatic steatosis in this animal
model.
In eSS rats, Chol/TG ratio in IDL was similar too in

its precursor VLDL, suggesting that the expected lipoly-
tic cascade has not been produced. Hypertriglyceridemia
detected in eSS rats would expose IDL and LDL to an
excessive interchange of cholesterol esters by TG doing
lipoproteins more prone to HL lipolytic activity. HL cat-
alyzes the hydrolysis of TG of IDL and LDL resulting in
smaller, denser lipoprotein particles, which are

Table 2 Intermediate-density-lipoprotein composition in
diabetic eSS rats and in euglycemic Wistar rats.

Rats Chol
%

TG
%

PL
%

Pro
%

eSS (n = 8) 4.9 ± 1.0 68.6 ± 1.3 7.5 ± 0.05 19 ± 0.79

W (n = 7) 5.6 ± 0.9 32.6 ± 5.3 31.7 ± 3 30.7 ± 2.7

p NS <0.001 <0.001 <0.001

Intermediate-density-lipoprotein (IDL), cholesterol (Chol), triglycerides (TG),
phospholipids (PL), proteins (Pro), Wistar controls (W).
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atherogenic in their oxidized form [30,31]. These
mechanisms would be responsible for the increased
LDL-Chol in eSS rats. More over, taking into account
that LDL size correlated negatively with plasma TG and
positively with HDL-Chol [32] we argued that LDL par-
ticles are small in eSS rats.
sAbnormal composition of HDL, with TG enrichment,

would also make HDL a better substrate for LH activity
[33,34]. In humans, a proatherogenic role for HL has
been suggested from the inverse correlation between
increased hepatic lipase activity and the plasma levels of
the antiatherogenic HDL and the positive correlation
with small dense proatherogenic LDL [35]. In eSS rats
HL values were similar to those of the controls without
increase in relation to insulin resistance. This could be
attributed, in part, to the characteristic non-obese dia-
betes of this model, since it has been observed that in
obese patients the larger trunk is a factor associated
with higher HL activity [36]. The observation that Cali-
fornia mice (Peromyscus californicus) develop a type II
diabetes mellitus without obesity showing hyperglycemia
and a dyslipidemia characterized by TG overloaded
VLDL and without modifications of HL values, lends
support to our view [37]. Nevertheless, new experiments
using antibodies against LH and against lipoprotein
lipase are needed to elucidate these aspects in eSS rats.
Although lipid disorders detected in eSS rats are con-

sidered as risk factors in the occurrence of vascular dis-
ease, atherosclerotic damage has not been detected in
eSS rats even in 24-month old animals [38]. The lack of
cholesteryl ester transfer protein in rats [39,40], consid-
ered to have a major atherogenic role in humans [40],
could be implied in the lack of cholesterol deposits in
the arteries of eSS rats.

Conclusion
The nonobese eSS rats develop a glucose and lipid disor-
der that could aid in studying the interaction between
hepatic steatosis, insulin resistance and dyslipidemia. This
model could provide valuable opportunities for investigat-
ing the pathways to clinical diabetes and its complications.
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