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Abstract
Background  Diabetic kidney disease (DKD) is a primary microvascular complication of diabetes with limited 
therapeutic effects. Delving into the pathogenic mechanisms of DKD and identifying new therapeutic targets is 
crucial. Emerging studies reveal the implication of ferroptosis and immune dysregulation in the pathogenesis of DKD, 
however, the precise relationship between them remains not fully elucidated. Investigating their interplay is pivotal 
to unraveling the pathogenesis of diabetic kidney disease, offering insights crucial for targeted interventions and 
improved patient outcomes.

Methods  Integrated analysis, Consensus clustering, Machine learning including Generalized Linear Models (GLM), 
RandomForest (RF), Support Vector Machine (SVM) and Extreme Gradient Boosting (xGB), Artificial neural network 
(ANN) methods of DKD glomerular mRNA sequencing were performed to screen DKD-related ferroptosis genes.
CIBERSORT, ESTIMATE and ssGSEA algorithm were used to assess the infiltration of immune cells between DKD and 
control groups and in two distinct ferroptosis phenotypes. The ferroptosis hub genes were verified in patients with 
DKD and in the db/db spontaneous type 2 diabetes mouse model via immunohistochemical and Western blotting 
analyses in mouse podocyte MPC5 and mesangial SV40-MES-13 cells under high-glucose (HG) conditions.

Results  We obtained 16 differentially expressed ferroptosis related genes and patients with DKD were clustered into 
two subgroups by consensus clustering. Five ferroptosis genes (DUSP1,ZFP36,PDK4,CD44 and RGS4) were identified 
to construct a diagnostic model with a good diagnosis performance in external validation. Analysis of immune 
infiltration revealed immune heterogeneity between DKD patients and controls.Moreover, a notable differentiation 
in immune landscape, comprised of Immune cells, ESTIMATE Score, Immune Score and Stromal Score was observed 
between two FRG clusters. GSVA analysis indicated that autophagy, apoptosis and complement activation can 
participate in the regulation of ferroptosis phenotypes. Experiment results showed that ZFP36 was significantly 
overexpressed in both tissue and cells while CD44 was on the contrary.Meanwhile,spearman analysis showed both 
ZFP36 and CD44 has a strong correlation with different immune cells,especially macrophage.

Conclusion  The regulation of the immune landscape in DKD is significantly influenced by the focal point on 
ferroptosis. Newly identified ferroptosis markers, CD44 and ZFP36, are poised to play essential roles through their 
interactions with macrophages, adding substantial value to this regulatory landscape.
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Introduction
Diabetic kidney disease (DKD) is one of the most seri-
ous microvascular diseases in patients with diabetes 
and the main cause of end-stage renal disease (ESRD) 
[1]. The incidences of diabetes mellitus (DM) and DKD 
are increasing rapidly, and place a great burden on the 
healthcare system in China [1]. According to the 10th 
edition of the Global Diabetes Map, as of 2021, there were 
537  million adult diabetic patients around the world, 
140.9 million of whom are in China [2]. DKD has a preva-
lence of 20–40% in patients with diabetes, and eventually 
progresses to chronic renal failure [3]. Conventional ther-
apeutic regimens such as glycemic control and the use 
of drugs such as Sodium-glucose Linked Transporter-2 
(SGLT-2) inhibitors and Renin-Angiotensin-Aldosterone 
System (RAAS) inhibitors [3], although widely used, have 
limited therapeutic efficacy in the treatment of DKD, 
especially in patients with glomerular filtration rates less 
than 20  ml/min. Hence, a better understanding of its 
molecular mechanisms and molecular changes involved 
in DKD and the identification of novel molecular targets 
for DKD therapy are urgently needed.

Iron is an essential nutrient element and involved in 
many physiological processes including cell growth, 
metabolism, proliferation, and differentiation.Homeo-
stasis of iron metabolism is modulated by systemic 
transport,average absorption and cellular storage and 
regulation,more and more evidence proved that the 
association between iron status and kidney diseases is 
inseparable, but iron overload in the body promotes cell 
death caused by membrane lipid peroxidation, namely 
ferroptosis [4–6].Since ferroptosis was first discovered 
in 2012,as a potential therapeutic way for various dis-
ease treatment has received generative concern [7, 8].
Previous studies have shown that ferroptosis plays a vital 
role in various malignancies and has a strong correlation 
with tumor immune reactions [9, 10].Recently, ferrop-
tosis has garnered enormous interest in non-neoplastic 
diseases,such as degenerative pathologies and numerous 
organ injuries [7].In addition to the diseases mentioned 
above, ferroptosis also plays a important role in DKD. 
Zhang et al.found that rosiglitazone, an inhibitor of acyl-
CoA synthetase long chain family 4 (ACSL4), improved 
the renal function and decreased lipid peroxidation 
products and desensitised ferroptosis in DKD mice [11].
Another research proved that the upregulation of Nrf2 by 
fenofibrate treatment suppresses diabetes-associated fer-
roptosis, thereby delaying the progression of DKD [12].
Sp1-mediated upregulation of Prdx6 expression prevents 
podocyte injury in DKD via mitigation of oxidative stress 
and ferroptosis [13].The above suggested that to further 

study the role of ferroptosis in the diagnosis and treat-
ment of DKD is a promising strategy.

The immune landscape mainly refers to immune cells 
and immune-related molecules in the immune microen-
vironment (IME). Previous studies have found that the 
tumor immune microenvironment plays a crucial role 
in regulating iron metabolism and homeostasis [14]. 
Many immune cells, such as innate immune cells (mac-
rophages and neutrophils) and adaptive immune cells 
(T and B lymphocytes), are affected by ferroptosis [15]. 
Furthermore, ferroptosis has been found to synergize 
with immunomodulation, further impacting the immune 
landscape in different cancers [16]. However, the rela-
tionship between ferroptosis and the immune landscape 
in DKD has not been clearly expounded.

In this study, we systematically assess the role of fer-
roptosis in the diagnosis of diabetic kidney disease and 
its relationship with the immune landscape. Initially, the 
diagnostic model is established by screening ferropto-
sis-related genes (FRGs) through artificial intelligence 
methods such as machine learning and artificial neural 
networks, benefiting the diagnosis of DKD and optimi-
zation of treatment strategies. Subsequently, based on 
the FRGs, the relationship between FRG-clustered sub-
groups, key genes, immune cells, and immune microen-
vironment (IME) scores is analyzed. Finally, our findings 
may help explore the mechanisms of how FRGs regulate 
the IME to identify potential therapeutic targets for the 
treatment of DKD. The specific details of the study are 
depicted in Fig. 1.

Materials and methods
Data collection
All datasets (GSE30528 [17], GSE104948 [18], GSE96804 
[19],GSE47183 [20] and GSE142025 [21]) acquired 
from kidney transcriptional profiles of DKD patients 
and control group patients were downloaded from the 
NCBI-GEO database (http://www.ncbi.nlm.nih.gov/
geo/) (Table  1). GSE30528, GSE104948, GSE96804 and 
GSE47183 were merged into a new matrix using the 
ComBat algorithm in the SVA R package in Bioconduc-
tor for batch correction of datasets to eliminate batch 
effects; this ultimately yielded a new matrix. Then we 
use the limma package for differentially expressed genes 
(DEGs) analysis with| logFC (fold change)| > 0.5 and 
adj.P.Val < 0.05 selected as the thresholds for screen-
ing. In addition, the volcano map and the heat map were 
visualized by the R software, which displayed the DEGs 
between two groups.
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Weighted gene co-expression network analysis
The WGCNA R package was used to construct a weighted 
coexpression network of gene clusters most relevant to 
DKD. To ensure the reliability of the weighted coexpres-
sion network, the samples were normalised and outliers 
were removed. The soft threshold was determined by 
calculating the best value of the weighting parameter of 
the neighbor function based on pick soft threshold. Then 
the adjacency matrix was transformed into a topological 
overlap matrix (TOM), the corresponding phase dissimi-
larity measure (1 − TOM) was calculated, and the DKD 

onset-related gene modules were constructed via hierar-
chical clustering using a dynamic tree cutting method.

Functional enrichment analyses of ferroptosis related 
genes
Ferroptosis-related genes (FRGs) were derived from the 
FerrDb V2 database (http://www.zhounan.org/ferrdb/) 
[22].The differentially expressed FRGs were obtained by 
intersecting the genes obtained using Limma,WGCNA 
and the FRGs with the VennDiagram R package.Then,the 
circos package were used to show the position of differ-
entially expressed FRGs (DE-FRGs) on the chromosome 
map. Finally,the ggplot2 and cluster Profiler R packages 
were applied to conduct Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
functional enrichment analyses, the results of which were 
drawn using the ggplot2 and enrichplot packages. Bio-
logical processes and signalling pathways were screened 
according to p < 0.05 and all results were visualised using 
the ggplot2 R package.

Table 1  Five datasets downloaded from the GEO database 
included in the study
Reference GEO Platform Con DKD
Woroniecka KI et al. GSE30528 GPL571 13 9
Grayson PC et al. GSE104948 GPL22945 18 7
Pan Y et al. GSE96804 GPL17586 20 41
Ju W et al. GSE47183 GPL14663 8 7
Fan Y et al. GSE142025 GPL20301 9 27

Fig. 1  The flowchart of the study. FRG: Ferroptosis related genes, DKD: Diabetic kidney disease, CON: Control, IME:Immune microenvironment
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Diagnosis of key DE-FRGs via GLM, RF, SVM, xGB and ANN
To discern the DE-FRGs with optimal diagnostic accu-
racy for predicting DKD, a comparative analysis of mul-
tiple artificial intelligence methodologies, namely the 
Generalized Linear Model (GLM), RandomForest (RF), 
Support Vector Machine (SVM), and Extreme Gradient 
Boosting (xGB), was undertaken within the caret R pack-
age. The selection of the most effective predictive method 
involved a meticulous evaluation of residual distribu-
tion and feature importance through the utilization of 
the modeling function within the Dalex R package. GLM 
extends the capabilities of the multiple linear regression 
model by flexibly estimating the relationship between 
features that exhibit correlation under a normal distribu-
tion, and both categorical and continuous independent 
features [23]. RF is a machine learning methodology that 
utilizes multiple standalone decision trees for the pur-
pose of classification or regression predictions [24].SVM 
algorithm constructs a hyperplane in the feature space, 
aiming to achieve the maximum margin for effectively 
distinguishing positive outcomes from negative examples 
[25]. xGBoost is an ensemble of boosted trees based on 
gradient boosting, providing a nuanced balance between 
classification accuracy and model complexity during 
comparisons [26].Therefore, the optimal machine learn-
ing model was chosen, and the identification of the five 
most crucial variables was conducted to determine the 
primary predictor gene linked to DKD.Besides, a DKD 
diagnosis nomogram was constructed based on the key 
genes using the rms R package. Artificial neural net-
work (ANN) model was constructed based on neuralnet 
package and predictive diagnostic value was exhibited 
by evaluating the area under the operating curve (AUC) 
in another DKD dataset (GSE142025) including 9con-
trol subjects and 27 patients with DKD. Before initiating 
ANN, it is imperative to standardize the maximum and 
minimum data values, and establish the number of hid-
den layers as 5. In the realm of parameter selection, there 
lacks a steadfast rule governing the fixed quantity of lay-
ers and neurons. Ideally, the number of neurons should 
be positioned between the input layer size and the out-
put layer size, conventionally around two-thirds of the 
input size.We performed receiver operating characteris-
tic (ROC) analysis using the pROC R package. DE-FRGs 
have an accurate diagnostic value in predicting DKD 
when AUC ≥ 0.7.

Unsupervised clustering for 16 key DE-FRGs
Unsupervised clustering analysis was used to identify 
distinct ferroptosis modification patterns according to 
the expression of 16 FRGs and divide patients into dif-
ferent groups for further analysis. The number of FRG 
clusters and the stability of clusters were decided by 
the consensus clustering algorithm [27]. The R package 

“ConsensusClusterPlus” was applied to conduct the 
above steps for 1000 times to guarantee the stability of 
classifcation [28].Principal component analysis (PCA) 
was applied to test the effect of key DE-FRGs classifica-
tion result.

Comparison and estimation of immune cell infiltration
CIBERSORT, as a tool based on the principle of lin-
ear support vector regression, is widely used to assess 
immune cell types in the microenvironment [29]. It con-
tains 547 biomarkers and defines 22 human immune cell 
phenotypes, covering plasma cells, B-cells, T-cells, and 
myeloid cell subpopulations. Immune cell gene expres-
sion profiles were downloaded from the CIBERSORT 
website, and the CIBERSORT R package was used to 
quantify immune cell infiltration. The obtained immune 
cell infiltration matrix was filtered at P < 0.05, and the 
results were visualized using the ‘corrplot’ R package. 
Moreover, we also used the ssGSEA (single-sample gene 
set enrichment analysis) method based on the immune 
gene set from a published article to assess the immune 
cell infiltration of each sample [30].

Immune microenvironment comparison between 
ferroptosis regulation patterns
The ESTIMATE method was conducted to evaluate stro-
mal score, immune score and ESTIMATE score. the ssG-
SEA algorithm was used to comprehensively estimate 
the immunological characteristics of each sample in this 
study based on 29 immune gene sets [31].We implement 
this analysis using estimate, GSVA, GSEABase, pheatmap 
and limma R packages.Moreover,the IME scores between 
different ferroptosis clusters were evaluated by Wilcoxon 
rank sum test.

Gene set variation analysis
Gene set variation analysis (GSVA) method was applied 
to assess biological activities of the ferroptosis subtypes. 
The gene set documents “c2.cp.kegg.symbols” and “c5.
go.symbols” used for running GSVA analysis were down-
loaded from the MSigDB database.

Experimental materials
The study received approval from the Human Ethics 
Review Committee of the China-Japan Friendship Hos-
pital (Approval Number: 2018-45-K34). All volunteers 
provided their informed consent and signed the neces-
sary documents. All animal experiments were conducted 
in compliance with the ARRIVE guidelines and adhered 
to the regulations outlined in the U.K. Animals (Scientific 
Procedures) Act of 1986.The clinical samples were from 
DKD patients by renal biopsy (according to the relevant 
standards in the 2021 version of the Chinese DKD clinical 
diagnosis and treatment guidelines). The control group 
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consisted of kidney tissues from 5 patients diagnosed 
with minimal change disease (MCD), whereas the experi-
mental group comprised kidney tissues from 5 patients 
with DKD.The experimental mice were purchased from 
Beijing Charles River Laboratories (CRL) Experimen-
tal Animal Technology Co., Ltd., including 20 week old 
male SPF db/db spontaneous type 2 diabetes mice and 
their litter born m/m mice. The control group included 
3 m/m mices with a normal genetic background while the 
experimental group comprised 3 db/db spontaneous type 
2 diabetes mices.The mouse immortalized kidney podo-
cyte line MPC5 cells were purchased from ATCC, and 
the mouse glomerular mesangial cell line SV40-MES-13 
cells were purchased from Shanghai Fuheng Cell Bank.

Antibody for CD44 and Nephrin were purchased from 
Abcam (Cambridge, MA, UK), antibody for ZFP36 was 
purchased from Abcepta (Suzhou,China) and antibodies 
for GPX4 and TFR1 were from Affinity Biosciences (Cin-
cinnati, OH, USA), and antibodies for Podocin, Ki67 and 
GAPDH were from Proteintech (Rosemont, IL, USA).
ECL luminous solution was purchased from Beijing 
Dingguo Changsheng Biotechnology Co, Ltd.

Immunohistochemical (IHC) staining
All specimens were fixed with 4% paraformaldehyde, 
embedded in paraffin, and cut into sections 4 μm   thick. 
The sections were rehydrated through a graded ethanol 
series, incubated in citrate buffer at 95 °C for 15 min for 
antigen retrieval, inactivated with H2O2 at room tem-
perature for 10 min, penetrated with 0.1% Triton X-100 
at room temperature for 10 min, and sealed with 5% BSA 
sealing solution at 37 °C for 1 h. Then, primary antibody 
to CD44, ZFP36, GPX4 or TFR1 was added dropwise 
and incubated at 37  °C for 2  h. After adding the corre-
sponding secondary antibody and incubating the samples 
at room temperature for 20  min, 3,3′-diaminobenzidine 
(DAB) as a chromogen was added for 5–10  min. The 
reaction was terminated by adding H2O2 and the nuclei 
were stained with hematoxylin for 1 min. Then the sec-
tions were dehydrated through a graded ethanol series, 
made transparent with xylene, sealed with neutral gum, 
and observed and photographed under a microscope.

Cell culture and grouping
MPC5 cells were treated with 10% FBS, 1% penicillin-
streptomycin, and 10 U/mL γ-interferon, and then cul-
tured in high-sugar DMEM. Cells at 70–80% confluence 
were collected to remove γ-interferon. MPC5 cells were 
further cultured and induced to differentiate for 1–2 
weeks. The differentiated and mature MPC5 cells were 
used in subsequent experiments. SV40-MES-13 cells 
were cultured in DMEM/F12 medium containing 10% 
FBS and 1% penicillin-streptomycin. The cells were cul-
tured in a 5% CO2 incubator at 37 °C for standby.MPC5 

and SV40-MES-13 cells were divided into two groups. 
In a HERAEUS instrument, cells were cultured with 5.5 
mmol glucose and 19.5 mmol mannitol as controls (Con-
trol), or with 25 mmol glucose as the high-glucose model 
group (HG).

Western blotting
Cells from each group were incubated on ice in RIPA 
lysis buffer containing 1% PMSF for lysis to extract total 
protein. The protein concentration was determined using 
a BCA kit. Aliquots of 30 µg total protein were separated 
by 6–16% SDS-PAGE and transferred to membranes, 
which were then blocked with 5% skim milk, probed with 
primary antibody (CD44, ZFP36, GPX4, TFR1, Nephrin, 
Podocin, Ki67, and GADPH) overnight at 4 °C and incu-
bated with horseradish peroxidase-conjugated second-
ary antibody at room temperature for 2 h. ECL luminous 
solution was used for colour development and images 
were taken.

Statistical analysis
Statistical analyses were performed using R software 
(version4.3.0). Differences between two groups were 
examined for significance by Kruskal-Wallis test or Wil-
coxon test. In all analyses, p < 0.05 was taken to indicate 
statistical significance.

Results
Acquisition of potential ferroptosis related genes of DKD
To identify potential ferroptosis related genes of DKD, 
we first integrated four datasets from GEO database and 
formed a new combined dataset including 59 control and 
64 DKD human glomeruli samples.The PCA (Fig. 2A and 
B) analysis showed that the batch effect between raw data 
and merged data was better eliminated. Subsequently,we 
screened for the deviantly expressed genes and identi-
fied 552 DEGs that likely associated with the onset of 
DKD.The result was presented through a volcano plot 
(Fig.  2C), and depicted the top 50 upregulated and the 
top 50 downregulated DEGs in a heatmap (Fig.  2D). 
Through WGCNA analysis, four modules were con-
structed (Fig. 2E) and Module-trait relationship analysis 
showed that the grey module (0.63 (P = 4e − 15)) had the 
most significant positive correlation with the pathogen-
esis of DKD,followed by brown module(0.58 (P = 3e − 12)) 
(Fig.  2F),the grey module containing 286 genes and the 
brown module containing 343 genes, totally 629 genes 
were regarded as the key genes related to DKD from 
WGCNA method.After taking intersection of the two 
methods with 564 ferroptosis genes from FerrDb V2 
database,a total of 16 DE-FRGs were finaly obtained 
(Fig. 2G).
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GO and KEGG enrichment analysis of DE-FRGs
The location of DE-FRGs on chromosomes was dis-
played in Fig.  3A.GO analysis showed that DE-
FRGs were mainly enriched in response to peptide 
hormone,response to nutrient levels, response to metal 
ion and etc. (Fig. 3B). KEGG pathway enrichment analy-
sis of DE-FRGs found that the main enriched pathways 
were Leishmaniasis,ferroptosis and etc. (Fig. 3C).

Detection and validation for hub DE-FRGs
The 16 DE-FRGs were put into four machine learn-
ing methods including RF, GLM, SVM and xGB. The 
xGB machine learning models resulted in the smallest 

residuals [Fig.  4A].Subsequently, the significant feature 
variables of each model’s top 10 were ordered based on 
root mean square error (RMSE) [Fig.  4C].Moreover, 
the discriminative efficacy of the four machine learn-
ing algorithms was assessed on the test set through the 
computation of receiver operating characteristic (ROC) 
curves using a fivefold cross-validation approach. The 
machine learning model exhibiting the greatest area 
under the curve (AUC) was chosen. Notably, the RF and 
xGB machine learning model demonstrated the highest 
AUC (AUC = 0.972, as depicted in Fig.  4B), indicating 
their superior performance in diagnosing Diabetic Kid-
ney Disease (DKD).In summary, xGB machine learning 

Fig. 3  (A)The Chromosomal location of DE-FRGs. (B) GO annotation and (C) KEGG pathway enrichment analysis of DE-FRGs.

 

Fig. 2  (A) and (B) The PCA before or after removing batch.(C)The volcano map of the DEGs.(D)The heatmap of the top 50 upregulated and top 50 
downregulated DEGs.(E and F) Four modules construction and Module-trait relationship from WGCNA. (G)The Venn map of WGCNA,DIFF and ferroptosis. 
DIFF:differently expressed genes; WGCNA:weighted gene co-expression network analysis.
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Fig. 4  (A) The root mean square of residuals,(B) feature importance and (C) four machine learning methods; (D) Nomogram for diagnosing DKD;(E) ANN 
diagnostic model and (F) ROC analysis for vailidation. 
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model performed the best model in terms of root mean 
square of residuals and diagnostic performance com-
pared with other three models [Fig. 4A-C].The five most 
important genes DUSP1,ZFP36,PDK4,CD44 and RGS4 
from xGB model were selected as hub DE-FRGs.A nomo-
gram for diagnosing DKD was constructed based on 
the five genes [Fig. 4D]. An ANN diagnostic model was 
developed based on the expression of five genes (Fig. 4D) 
and ROC analysis was conducted by using the data of the 
GSE142025 dataset to test accurate diagnostic value.The 
AUC was 0.996 for DUSP1, 0.992 for ZFP36, 0.971 for 
PDK4, 0.885 for CD44 and 0.761 for RGS4 (Fig. 4E).

Identifcation of two ferroptosis regulation patterns 
facilitated by 16 FRGs
In order to further understand ferroptosis regulation pat-
terns facilitated, we conducted consensus clustering anal-
ysis for subsequent study in DKD patients.Using cluster 
consensus, clustering heatmap and cumulative distribu-
tion function curves, we determined that the ideal value 
for k is 2 in subsequent analysis [Fig.  5A-D].The PCA 
analysis of two ferroptosis regulation patterns showed 
that the two ferroptosis clusters can be significantly dis-
tinguished and there are 37 DKD patients in cluster A 
and 27 DKD patients in cluster B [Fig.  5E].The expres-
sions of five hub DE-FRGs all exhibit significant distinc-
tions between two ferroptosis clusters except for DUSP1 
[Fig. 5F].

Immune cell Infiltration between CON and DKD,correlation 
analysis between immune infiltrating cells, key genes and 
different ferroptosis subtypes
Utilizing the CIBERSORT algorithm, we identified a 
pronounced variance in the composition of immune 
cells between DKD and CON [Fig.  6A].There were sig-
nificantly differential expression of B cells naive, T cells 
CD4 memory activated, NK cells resting, Macrophages 
M2, Dendritic cells resting, Mast cells resting and Neu-
trophils between CON and DKD patients [Fig. 6B].Based 
on CIBERSORT algorithm,we found B cells naive, T cells 
CD8, NK cells resting, Mast cells activated and Neutro-
phils were significantly increased in Cluster A, while B 
cells memory, T cells gamma delta, Macrophages M2, 
Mast cells resting were significantly decreased (p < 0.05)
[Fig.  6C].The correlation between hub DE-FRGs and 
immune cell infiltration levels from CIBERSORT meth-
ods in DKD were investigated using spearman analysis, 
from which we uncovered the subsequent significant 
connections: ZFP36 was associated with Macrophages 
M2, RGS4 with 11 immune cells and has the strongest 
correlation with Macrophages M2, Neutrophils and T 
cells gamma delta (p < 0.001),PDK4 with Neutrophils 
and T cells CD4 memory resting, DUSP1 with 5 immune 
cells, CD44 with 13 immune cells and has the stron-
gest correlation with B cells naive, Macrophages M2 
and T cells gamma delta etc. (p < 0.001) [Fig.  6D].Based 
on ssGSEA algorithm,we found 18 immune cells were 
significantly expressed between cluster A and cluster B 
(p < 0.05)[Fig. 6E].The correlation between hub DE-FRGs 
and immune cell infiltration levels from ssGSEA algo-
rithm in DKD were also investigated using spearman 

Fig. 5  (A-D) Unsupervised clustering of 17 ferroptosis genes in a merged DKD cohort (n = 64, k = 2); (E) PCA analysis between two ferroptosis clusters;(F) 
The expression of five hub DE-FRGs in two ferroptosis clusters in merged cohort. *p < 0.05, **p < 0.01, ***p < 0.001
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analysis,ZFP36 was associated with 11 immune cells, 
RGS4 with 20 immune cells, PDK4 with 5 immune cells, 
DUSP1 with 9 immune cells, CD44 with 21 immune cells 
[Fig. 6F].

The Immune microenvironment characteristics of two 
ferroptosis subtypes
We assessed the differences in the composition of the 
immune microenvironment, encompassing immune 
cells, stromal score, immune score, and ESTIMATE 
score across two ferroptosis subtypes using the estimate 
and ssGSEA algorithms [Fig.  7A]. The DKD samples 
were divided into two gene clusters (gene cluster A and 
B) using the consensus clustering method based on the 
expression of 270 DEGs. The DKD samples were further 
categorized into three immunity groups (Immunity High, 
Middle, and Low) according to the ssGSEA results. The 
FRG cluster, gene cluster, and immunity group were visu-
alized using an alluvial diagram created with the ggal-
luvial R package [Fig. 7B]. In DKD patients, FRG cluster 

A demonstrated relatively lower stromal, immune, and 
ESTIMATE scores compared to FRG cluster B, and this 
difference is statistically significant (p < 0.001) [Fig. 7C].

GSVA pathway analysis of ferroptosis subtypes
The GSVA pathway analysis unveiled a multitude 
of pathways significantly enriched based on the GO 
and KEGG gene set documents exhibited signifi-
cant differences between two ferroptosis clusters.
For instance,SCF UBIQUITIN LIGASE COMPLEX, 
CELL REGULATION and COMPLEMENT_ACTIVA-
TION etc. (Fig.  8A), REGULATION OF AUTOPH-
AGY, PEROXISOME,CIRCADIAN RHYTHM 
MAMMAL,APOPTOSIS and other pathways (Fig. 8B).

IHC staining results of kidney tissues
Compared with m/m mice, there were irregular nodular 
PAS positive material deposits in the glomeruli of db/
db mice, glomerular mesangial matrix hyperplasia, and 
basement membrane thickening. In addition, IHC results 

Fig. 6  (A) The distribution of immune cells infiltration computed using the CIBERSORT algorithm; (B) The differentially expression of immune cells 
between CON and DKD; (C) Association between ferroptosis subtypes and immune infiltrating cells according to CIBERSORT algorithm; (D) Correlation 
between hub DE-FRGs and immune infiltrating cells based on CIBERSORT algorithm; (E) Association between ferroptosis subtypes and immune infil-
trating cells according to ssGSEA algorithm; (F) Correlation between hub DE-FRGs and immune infiltrating cells based on ssGSEA algorithm. *p < 0.05, 
**p < 0.01, ***p < 0.001
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showed that compared with m/m mice, the expres-
sion of CD44 and TFR1 in db/db mice was significantly 
increased, and the expression of ZFP36 and GPX4 was 
significantly reduced (Fig. 9A).Similar findings were also 
observed in renal tissue from DKD patients compared 
with MCD patients(Fig. 9B).

Western blotting results of cells
Western Blotting showed that in MPC5 cells and SV40-
MES-13 cells, the expression of CD44,TFR1 and Ki67 in 
HG group was significantly higher than that in Control 
group (p < 0.01), while the expression of ZFP36, GPX4, 
Nephrin and Podocin was significantly lower ( p < 0.01)
(Fig. 9C).

Discussion
Ferroptosis, a form of programmed cell death first pro-
posed by Dixon et al. in 2012 [6], has been found to be 
involved in numerous pathological processes. Studies 
have shown that ferroptosis plays a crucial role in various 
cancer diseases, and an increasing amount of research is 
being conducted to investigate the relationship between 
ferroptosis and non-cancer diseases [7].DKD as the lead-
ing cause of chronic kidney disease worldwide, has also 
garnered significant interest in its connection with fer-
roptosis.Several studies have highlighted the significant 
role of ferroptosis in the initiation and advancement of 
DKD, resulting in renal tubular injury [11, 32], glomeru-
lar injury [13, 33] and directing interventions towards 
ferroptosis can mitigate interstitial inflammation and 
renal fibrosis [34].Furthermore, ferroptosis is often 

Fig. 8  Differential pathway enrichment between FRG cluster A and cluster B based on (A) GO and (B) KEGG gene sets.

 

Fig. 7  (A)The heatmap of the immune microenvironment between two ferroptosis clusters in DKD (FRG cluster A vs. cluster B); (B)The relationship of 
ferroptosis clusters,gene clusters and Immunity clusters; (C)The comparison of stromal, immune and ESTIMATE scores between FRG clusters.
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associated with an inflammatory response. To date, it 
has been identified to be involved in regulating the IME 
in a variety of diseases [35].Ferroptosis can modulate 
metabolic changes or the secretion of related substances 
between microbes and host cells or among host cells 
under inflammatory microenvironments. Furthermore, 
ferroptotic cells can recruit immune cells by releasing 
damage-associated molecular patterns, thereby induc-
ing the generation of inflammatory microenvironments 
[35]. Nevertheless, there is limited understanding regard-
ing the potential role of ferroptosis in shaping the IME in 
DKD. Therefore, it is urgent to fully elucidate the associa-
tion between ferroptosis status with IME in DKD, which 
might offer a fresh avenue for exploring the fundamental 
molecular mechanisms.

In this study, we systematically examined the differen-
tial expression of FRGs in DKD and control kidney tis-
sues by consolidating data from multiple databases and 
16 DE-FRGs were finaly obtained. Functional annotation 
analysis confirmed that these genes are closely related 
to ferroptosis. Subsequently, according to the 16 DE-
FRGs, two FRG clusters (cluster A and cluster B ) were 
established by by consensus clustering, and was corre-
lated with IME characteristics, including immune cells, 
stromal score, immune score and ESTIMATE score. 
Five ferroptosis genes (DUSP1,ZFP36,PDK4,CD44 and 

RGS4) were closely associated with DKD by machine 
learning algorithms.The diagnostic model based on the 
five ferroptosis genes had a good diagnosis performance 
in distinguishing DKD from control patients in external 
validation.The expression of DUSP1 between two FRG 
clusters were of no sense,the other four genes were with 
significance.ZFP36,CD44 and PDK4 has a better perfor-
mance in diagnosing DKD with AUC > 0.85.Moreover, 
ZFP 36 and CD44 has a strong correlation with multiple 
immune cells infiltration means they may play a vital role 
between IME and ferroptosis. Finally, a plausible identi-
fication revealed the upregulation of the ferroptosis reg-
ulator ZFP36 and GPX4 and the downregulation of the 
ferroptosis regulator CD44 and TRF1 in DKD through 
the utilization of IHC in DKD tissues and db/db spon-
taneous type 2 diabetes mouse model and WB in mouse 
podocyte MPC5 and mesangial SV40-MES-13 cells 
under HG conditions.

For a more comprehensive exploration of the crosstalk 
between Ferroptosis subtypes and IME, as well as the 
interaction between key FRGs and immune cells in DKD, 
we employed a variety of immune assessment algorithms, 
including CIBERSORT, ESTIMATE and ssGSEA.Based 
on CIBERSORT algorithm, we observed that the infiltra-
tion of B cells naive, T cells CD4 memory activated, NK 
cells resting, Macrophages M2, Dendritic cells resting, 

Fig. 9  PAS staining and IHC staining results of kidney tissues of (A) experimental mice and (B) clinical patients;(C)Western Blotting for protein expression 
in MPC cells and SV40-MES-13 cells. * p < 0.05, * * p < 0.01
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Mast cells resting and Neutrophils were the significantly 
different between CON and DKD,which is mostly consis-
tent with Zhang,XQ et al’s findings [36].Another notable 
observation is the increased presence of both M1 and 
M2 macrophages in DKD patients, with the elevation of 
M2 macrophages showing the most pronounced differ-
ence.Investigations have unveiled that M1 macrophages 
are linked to the initial phases of DKD damage [37], 
exhibiting an M2 phenotype during the DKD’s repara-
tive stage [38] and it could prevent podocyte damage by 
inhibiting M1 macrophage activation and promoting M2 
macrophage transformation [39].Notably, our research 
found that M2 macrophages were significantly increased 
in DKD may be due to M1 macrophages can ultimately 
transform into M2 macrophages.However,the role of 
M2 macrophages in the fibrosis of DKD is controver-
sial, since they can participant in anti-inflammatory by 
secreting a number of anti-inflammatory molecules, for 
example IL-10,as well as promotes kidney fibrosis at the 
advanced stage of DKD by secreting a list of proinflam-
matory mediators,such as IL-1β,transforming growth 
factor-beta (TGF-β) and chemotactic protein-1 (MCP-1) 
[40].Furthermore, the reduction in one category of mac-
rophages can trigger a transformation to another type of 
macrophage in response to the adverse conditions within 
the diseased microenvironment. Macrophages play a 
pivotal role in maintaining tissue balance by oversee-
ing inflammation and controlling iron, lipid, and amino 
acid metabolism through their unique abilities, such as 
phagocytosis and efferocytosis, as well as the secretion 
of cytokines and the generation of reactive oxygen spe-
cies (ROS) under varying polarization conditions since 
ferroptosis is often associated with concurrent inflam-
matory responses [41],it’s clear that there is a connection 
between macrophages and ferroptosis.

According to the immune cells infiltration results 
from the three immune estimation algorithms, mul-
tiple immune cells were significant difference between 
FRG-cluster A and FRG-Cluster B. Among them, mac-
rophages are the most important. In addition, two cru-
cial ferroptosis genes, CD44 and ZFP36, experimentally 
validated, exhibited a positive correlation with macro-
phages, with CD44 showing a particularly strong asso-
ciation. ZFP36, namely zinc finger protein 36, exerts an 
influence on the stability of TNF-α mRNA and a recent 
study has revealed that the disruption of ZFP36 in mice 
led to the development of a multifaceted inflammatory 
syndrome due to elevated TNF-α production [42] and 
further attracts macrophage infiltration. In this study, we 
first revealed ZFP36 protein expression were downregu-
lated in DKD kidney tissues and in podocyte MPC5 and 
mesangial SV40-MES-13 cells after HG stimulation,while 
the downregulation of ZFP36 can trigger the activation 
of ferritinophagy and the initiation of ferroptosis [43].

CD44, a cell-surface glycoprotein, has been extensively 
researched, with its functions encompassing a wide 
range of physiological and pathological activities, such 
as cell proliferation, adhesion, migration, angiogenesis, 
inflammation, and cytoskeleton rearrangement [44]. 
Nevertheless, recent findings also shed light on CD44’s 
involvement in metabolism, particularly its role in insulin 
resistance associated with obesity and diabetes and plays 
a critical role in maintaining glucose and lipid homeo-
stasis [44].Interestingly, targeted inhibition of CD44/
SLC7A11 interactions could render tumor cells more 
susceptible to ferroptosis [45].To the best of our under-
standing, our team is the first to unveil that CD44 pro-
tein expression is upregulated in diabetic kidney disease 
(DKD) kidney tissues, as well as in podocyte and mesan-
gial cells exposed to high glucose (HG) stimulation. 
Moreover, CD44 influences epigenetic adaptability by 
controlling the process of iron endocytosis [46] and the 
expression of CD44 in renal tissue is associated with an 
increase in complement levels in urine and renal fibrosis 
[47].Our research indicated that CD44 and ZFP36 maybe 
a potential regulator between IME and ferroptosis in 
DKD.Notably, there was a pronounced difference in IME 
between FRG-cluster A and FRG-Cluster B, suggesting 
that patients in FRG-Cluster B had a heightened capacity 
for immune evasion and this may be due to autophagy, 
apoptosis or complement activation participate in the 
regulation of ferroptosis phenotypes according to GSVA 
analysis.

This study still has certain limitations that we aim to 
address progressively in the future.Firstly, Despite our 
pioneering discovery and validation of the functions 
of ferroptosis regulators CD44 and ZFP36 in DKD and 
immune infiltration, it remains imperative to ascer-
tain the potential biological roles of ZFP36 and CD44.
Another limitation is the absence of verification for the 
interactions between CD44, ZFP36, ferroptosis, and 
macrophages in DKD through other functional or in 
vitro studies. This will be a primary area of focus for our 
future research.

To summarize, this study identified two molecular FRG 
subtypes in DKD using consensus clustering and immune 
analyses indicate that the dysregulation of the IME may 
be responsible for triggering ferroptosis. Additionally, we 
have identified and confirmed that CD44 and ZFP36 rep-
resent two promising biomarkers and have a positive cor-
relation with macrophages, offering potential efficacy in 
the recognition and development of mRNA vaccines for 
individuals with DKD.
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