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Abstract
Background  Type 1 diabetes mellitus (T1DM) has been associated with higher pulmonary tuberculosis (PTB) risk in 
observational studies. However, the causal relationship between them remains unclear. This study aimed to assess the 
causal effect between T1DM and PTB using bidirectional Mendelian randomization (MR) analysis.

Methods  Single nucleotide polymorphisms (SNPs) of T1DM and PTB were extracted from the public genetic 
variation summary database. In addition, GWAS data were collected to explore the causal relationship between 
PTB and relevant clinical traits of T1DM, including glycemic traits, lipids, and obesity. The inverse variance weighting 
method (IVW), weighted median method, and MR‒Egger regression were used to evaluate the causal relationship. To 
ensure the stability of the results, sensitivity analyses assess the robustness of the results by estimating heterogeneity 
and pleiotropy.

Results  IVW showed that T1DM increased the risk of PTB (OR = 1.07, 95% CI: 1.03–1.12, P < 0.001), which was similar to 
the results of MR‒Egger and weighted median analyses. Moreover, we found that high-density lipoprotein cholesterol 
(HDL-C; OR = 1.28, 95% CI: 1.03–1.59, P = 0.026) was associated with PTB. There was no evidence of an effect of 
glycemic traits, remaining lipid markers, or obesity on the risk of PTB. In the reverse MR analysis, no causal relationships 
were detected for PTB on T1DM and its relevant clinical traits.

Conclusion  This study supported that T1DM and HDL-C were risk factors for PTB. This implies the effective role of 
treating T1DM and managing HDL-C in reducing the risk of PTB, which provides an essential basis for the prevention 
and comanagement of concurrent T1DM and PTB in clinical practice.
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Introduction
Type 1 diabetes mellitus (T1DM) is a chronic autoim-
mune disease characterized by absolute insulin deficiency 
and hyperglycemia [1]. It usually occurs in childhood 
and adolescence, accounting for approximately 5–10% 
of all diabetes cases [2, 3]. There is a growing trend in 
the prevalence of T1DM globally, with an increase of 
approximately 2–3% per year. It is predicted that 13.5–
17.4 million people worldwide will have T1DM by 2040 
(60–107% higher than in 2021), leading to a heavy burden 
on families and economies [4, 5]. Pulmonary tuberculo-
sis (PTB) is a chronic infectious disease caused by Myco-
bacterium tuberculosis(Mtb) [6]. According to the World 
Health Organization (WHO), approximately 10.6  mil-
lion people suffered from TB in 2021, an increase of 4.5% 
compared to 2020 [7, 8]. As the complication rates of dia-
betes and tuberculosis increase, it is necessary to further 
elucidate the association to better reduce the burden of 
disease.

Several recent studies have suggested that T1DM is a 
primary risk factor for PTB. For example, a hospital-
based cross-sectional study reported that the prevalence 
of Mtb infection in children and adolescents with T1DM 
was 29.8% (95% CI 24.2–35.4) [9]. Another case‒control 
study demonstrated that patients with diabetes had 2.66 
times the risk of PTB compared to the general population 
[10]. A systematic evaluation of 13 observational studies 
identified a statistically significant association between 
diabetes and latent tuberculosis infection [11]. How-
ever, the results of observational studies may be affected 
by reverse causality and confounding factors, as well as 
the fact that most of the studies did not specify diabetes 
phenotypes. Given the differences between T1DM and 
T2DM in terms of etiology, pathogenesis, and underlying 
genetic factors, direct evidence of a causal relationship 
between T1DM and PTB is still currently lacking.

T1DM is frequently accompanied by disorders of glu-
cose and lipid metabolism and obesity [12, 13]. Some 
studies have concluded that diabetic patients are sus-
ceptible to PTB infection, which is related to disturbed 
glucose and lipid metabolism in diabetic patients [14]. 
A cohort study indicated that an estimated 7.5% of TB 
occurrences were attributed to poor glycemic control 
[15]. Besides, it has been observed that serum high-den-
sity lipoprotein cholesterol (HDL-C), low-density lipo-
protein cholesterol (LDL-C), and total cholesterol (TC) 
concentrations were lower in patients with PTB [16]. A 
systematic evaluation identified a consistent log-linear 
relationship between BMI and tuberculosis incidence, 
with a decrease in TB incidence of approximately 14% 
per unit increase in body mass index (BMI) [17]. Never-
theless, there are few studies and mostly observational 
trials. Further research is necessary to support a causal 
relationship between glucose, lipids, obesity, and PTB.

Mendelian randomization (MR) utilizes genetic vari-
ants as instrumental variables (IVs) to elucidate the 
causal relationship between exposure and outcome [18]. 
Due to the random assignment of genetic variants dur-
ing meiosis, MR is effective in reducing biases caused by 
confounders and reverse causality [19]. Compared with 
prospective experiments, MR analysis reveals causal 
associations in a time-saving and cost-effective manner 
[20].

In the present study, we performed the first bidirec-
tional two-sample MR analysis to assess the causal effects 
between T1DM and PTB.

Methods
Study design
A brief description of the bidirectional MR analysis 
is demonstrated in Fig.  1. The MR analysis was per-
formed to explore potential causal relationships between 
T1DM and PTB. In addition, the relevant clinical traits 
of T1DM, including glycemic traits, blood lipids, and 
obesity, were also investigated for potential causality 
with PTB to explore the underlying genetic mechanisms 
between T1DM and PTB. There are three core assump-
tions of study design: first, the genetic variations used as 
IVs should be robustly associated with the exposure; sec-
ond, the genetic variations should be independent of con-
founders; and third, the genetic variations should affect 
the risk of the outcome merely through the exposure and 
not through any other pathways.

Data sources
Table 1 displays the characteristics of the results from the 
Genome-Wide Association Study (GWAS).

T1DM  The genetic instruments from the latest GWAS 
meta-analysis for T1DM were based on 520,580 individu-
als (18,942 T1DM cases and 501,638 controls) of Euro-
pean ancestry from the European Bioinformatics Institute 
(EBI) database [21].

Hyperglycemia  Summary statistics on glycemic traits 
[fasting blood glucose (FBG), glycosylated hemoglobin 
(HbA1c)] were extracted from the Meta-Analyses of Glu-
cose and Insulin-related Traits Consortium (MAGIC), 
including 133,010 and 46,368 nondiabetic individuals 
of European ancestry [22, 23]. For fasting insulin (FI), 
extracted from the EBI database, the data consisted of 
151,013 individuals of European ancestry [24].

Blood lipid  Data from the Global Lipids Genetic Con-
sortium (GLGC) were used to identify genetic loci for 
blood lipids [HDL-C, LDL-C, TC, triglycerides (TG)], 
including 188,578 individuals of European ancestry and 
7,898 individuals of non-European ancestry [25].
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Obesity  Results from the Genetic Investigation of 
Anthropometric Traits consortium (GIANT) were used 
to identify genetic instruments for BMI and waist-to-hip 
(WHR), including 322,154 and 210,088 individuals of 
European ancestry [26, 27].

PTB  We extracted genetic variation data for respira-
tory tuberculosis from the FinnGen Consortium. The 

summary-level statistics are from a large study involving 
377,277 individuals (2,432 cases and 374,845 controls); all 
participants were of European ancestry [28].

IV selection
Based on the three core assumptions, the IVs for MR 
studies were chosen: (1) single nucleotide polymorphisms 
(SNPs) were robustly associated with the exposure 
(p < 5e-8). Since no SNP were selected as genetic instru-
ments for PTB that reached genome-wide significance, 
we adopted a less stringent threshold (P < 1e–5) to iden-
tify more SNPs for PTB [29]; (2) the independent SNPs 
were selected after excluding linkage disequilibrium 
(kb = 10,000, r2 < 0.001); (3) the F statistic was used to 
assess the strength of the IVs, which is calculated as ( R2

1−R2

)×(N−K−1
K ), where R2 is the degree of exposure explained 

by the instrument, n represents the sample size, and k is 
the number of SNPs. With an F statistic > 10, IVs can be 
identified to minimize potential weak instrumental bias 
[30]. (4) To avoid potential pleiotropic effects caused by 
confounders, we assessed the confounders influencing 
the incidence of PTB from previous meta-analysis stud-
ies, including smoking [31], alcohol consumption [32], 
anemia [33], and HIV [34]. Potentially confounding SNPs 
were removed via the PhenoScanner website (http://
www.phenoscanner.medschl.cam.ac.uk/), as presented in 
Table S1.

Statistical analysis
Several analytical methods, including inverse variance-
weighted (IVW), MR‒Egger, and weighted median, were 
used in the MR analyses [35]. Among them, IVW was 
used as the primary statistical method, which provides 
the most accurate causal estimates assuming that all 
SNPs are valid instrumental variables. MR‒Egger analysis 

Table 1  The characteristics of the GWAS
Trait Ancestry Sample 

Size
Sex Consortium

T1DM European 520,580 Female 
and male

PMID: 34,012,112

FBG European 133,010 Female 
and male

MAGIC

HbA1c European 46,368 Female 
and male

MAGIC

FI European 151,013 Female 
and male

PMID: 34,059,833

LDL-C Mixed 173,082 Female 
and male

GLGC

HDL-C Mixed 187,167 Female 
and male

GLGC

TG Mixed 177,861 Female 
and male

GLGC

TC Mixed 187,365 Female 
and male

GLGC

BMI European 322,154 Female 
and male

GIANT

WHR European 210,088 Female 
and male

GIANT

Respiratory 
tuberculosis

European 377,278 Female 
and male

FinnGen

T1DM, type 1 diabetes; FBG, fasting blood glucose; HbA1c, glycosylated 
hemoglobin; FI, fasting insulin; LDL-C, low-density lipoprotein cholesterol; HDL-
C, high-density lipoprotein cholesterol; TG, triglycerides; TC, total cholesterol; 
BMI, body mass index; WHR, waist-to-hip ratio

Fig. 1  Overview of the bidirectional MR analysis. SNPs, single-nucleotide polymorphisms; T1DM, type 1 diabetes; FBG, fasting blood glucose; FI, fasting 
insulin; HbA1c, glycosylated hemoglobin; TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipopro-
tein cholesterol; BMI, body mass index; WHR, waist-to-hip ratio
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can generate estimates if significant horizontal pleiotropy 
is detected [36]. The weighted median method can pro-
vide accurate causal estimates when at least 50% of the 
weights come from valid instrumental variables [37]. The 
Q statistics (Cochran’s Q for IVW and Rücker’s Q for 
MR‒Egger) were used to assess heterogeneity in the esti-
mates of SNPs, with p values less than 0.05 indicating the 
presence of heterogeneity [38]. The MR‒Egger regression 
intercept examination was used to estimate possible hori-
zontal pleiotropy, and a deviation from zero indicated 
directional pleiotropy [36, 39]. The MR-pleiotropy resid-
ual sum and outlier (MR-PRESSO) was used to detect 
outlying SNPs and provide estimates after removing the 
outliers [40]. Statistical analysis was performed using 
the R packages “TwoSampleMR” and “MRPRESSO” in R 
software (version 4.0.2).

Results
Bidirectional causal effect between T1DM and PTB
Figure 2 demonstrates the MR estimates between T1DM 
and PTB. Using 74 associated SNPs as IVs, IVW analy-
sis showed that T1DM was correlated with the risk of 
PTB (OR = 1.07, 95% CI: 1.03–1.12, P < 0.001), with one 
SNP removed as an outlier (rs1794269). The results of 
other MR methods were consistent with IVW analysis 
(Fig.  2), and no heterogeneity or directional pleiotropy 
was detected (Table S2, Figure S1 in the Supplement). 
There was no evidence of reverse causation effect of PTB 
on T1DM (OR = 1.19, 95% CI: 0.76–1.86, P = 0.442). MR-
PRESSO showed horizontal pleiotropy (P < 0.001), with 
four SNPs identified as outliers (rs185377955, rs2395516, 
rs6708458, rs72836185). When the outliers were 
removed, there was no significant change in the reverse 
causality of PTB on T1DM (OR = 0.98, 95% CI: 0.93–1.03, 
P = 0.427), which was consistent across the MR‒Egger 
and weighted median analyses (Fig. 2). The Cochran’s Q 
test and MR‒Egger regression intercept for the relation-
ship did not reveal any evidence of directional pleiotropy 
or heterogeneity (Table S3, Figure S2 in the Supplement).

Causal effect of metabolic factors and obesity on PTB
Figure  3 demonstrates the MR estimates of metabolic 
factors and obesity on PTB. Genetic predisposition to 
HDL-C was associated with an increased risk of PTB 
(OR = 1.28, 95% CI: 1.03–1.59, P = 0.026; Fig. 3, Table S8, 
Figure S7 in the Supplement). Evidence that other meta-
bolic factors and obesity had any effect on PTB was not 
identified by IVW, which was similar to the results of 
MR‒Egger and weighted median analyses (Fig. 3). There 
was no evidence of any directional pleiotropy or het-
erogeneity detected by Cochran’s Q test and MR‒Egger 
regression intercepts (Table S4-12, Figure S3-11 in the 
Supplement).

Causal effect of PTB on metabolic factors and obesity
Figure 4 demonstrates the MR estimates of PTB on meta-
bolic factors and obesity. To assess reverse causal effects, 
we extracted 20 SNPs strongly and independently asso-
ciated with PTB at a significance of P <1e − 5. No eligible 
SNPs were identified between PTB and FBG. There was 
no statistically significant genetic risk association of PTB 
for metabolic factors and obesity in any analyses (Fig. 4).
MR-PRESSO global test and the MR-Egger intercept 
test showed no evidence for horizontal pleiotropy and 
Cochran Q tests did not detect heterogeneity (Fig.  4, 
Table S13-20, Figure S12-19 in the Supplement).

Discussion
Based on large-scale GWAS data from MR analyses, our 
study provided strong evidence that genetic susceptibility 
to T1DM was associated with an increased risk of PTB, 
although reverse causality was insufficiently supported. 
We discovered HDL-C was correlated with the risk of 
PTB. There was no evidence of an association between 
other relevant clinical traits of T1DM and PTB.

Our study corroborated that the genetic predisposition 
to T1DM was associated with an increased risk of PTB, 
which is consistent with previous studies. Animal studies 
have indicated an increased susceptibility to Mtb infec-
tion in T1DM rats [41]. Several previous studies have 

Fig. 2  MR results for the bidirectional causal effect between T1DM and PTB. T1DM, type 1 diabetes; FBG, fasting blood glucose; FI, fasting insulin; HbA1c, 
glycosylated hemoglobin; SNPs, single-nucleotide polymorphisms; MR, Mendelian randomization; CI, confidence interval; OR, odds ratio; IVW, inverse 
variance-weighted; WM, weighted median; P value for heterogeneity based on Cochran’s Q statistic for IVW and Rücker’s Q for MR‒Egger
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revealed significant heterogeneity in diabetes popula-
tions with PTB concerning age, sex, ethnicity, and socio-
economic status, among others [42]. Nevertheless, it 
seemed that T1DM remained correlated with PTB after 
adjusting for potential confounders. A cross-sectional 
study of children and youth with T1DM indicated that 
the prevalence of latent tuberculosis was 14.9%, with 
females slightly higher than males (P > 0.05), and that 
the duration of T1DM and age at diagnosis had no sig-
nificant effect (P > 0.05) [43]. Another population-based 
cohort study showed that patients with T1DM were at 
an increased risk of tuberculosis, which was higher in 
men than in women (4.62 vs. 3.59), and in adults than in 
children (4.06 vs. 3.37), but not significantly [44]. None-
theless, these studies were not immune to other con-
founding factors, and our inability to stratify by gender, 
age, and other factors was a potential limitation of this 
study. Moreover, it has been demonstrated that impaired 
Interleukin-1beta (IL-1β), Interleukin-6 (IL-6), and Inter-
feron gamma (IFN-γ) production in patients with T1DM 
may lead to increased susceptibility to tuberculosis [45, 
46]. Thus, immune dysfunction may have a significant 

role in tuberculosis susceptibility. As alveolar macro-
phages perform a cardinal function in Mtb infection and 
replication, IFN-γ determines macrophage activation [47, 
48]. IL-1β induces eicosanoids to promote bacterial con-
trol and limits type 1 IFN-γ production, which reduces 
the effect of macrophages and increases tuberculosis 
susceptibility in patients with T1DM [49]. Regarding the 
opposite direction, our MR analyses revealed no evidence 
to support a causal effect of PTB on T1DM. Despite the 
studies that have reported a greater risk of diabetes in 
patients with PTB, evidence is scarce [50]. Banyai has 
proposed from animal experiments that Mtb infection 
can promote necrosis and atrophy of the pancreas to 
affect diabetes [51]. Given that T2DM comprises 95% of 
diabetes, patients in a majority of studies appeared to be 
T2DM, with the TB-T1DM association currently under-
studied. Moreover, the results may be attributed to tran-
sient hyperglycemia as a result of febrile manifestations 
of PTB [52]. A prospective cohort study indicated that 
PTB could promote transient glycemia, without conclu-
sively demonstrating the promotion of chronic glycemic 
abnormalities [53].

Fig. 3  MR results for the causal effect of metabolic factors and obesity on PTB. PTB, pulmonary tuberculosis; FBG, fasting blood glucose; HbA1c, glyco-
sylated hemoglobin; FI, fasting insulin; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; TC, total 
cholesterol; BMI, body mass index; WHR, waist-to-hip ratio; SNPs, single-nucleotide polymorphisms; MR, Mendelian randomization; CI, confidence inter-
nal; OR, odds ratio; IVW, inverse variance-weighted; WM, weighted median; P value for heterogeneity based on Cochran’s Q statistic for IVW, and Rücker’s 
Q for MR‒Egger
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The study also explored the correlation between PTB 
and relevant metabolic characteristics of T1DM. Our 
purpose was to confirm the influencing factors further 
by investigating the causal association between glycemic 
traits and PTB. However, we did not identify a causal cor-
relation between PTB and FBG, HbA1c, and FI, which 
was different from some previous observational studies 
[15, 54]. The difference may be explained as follows: (1) 
The results obtained from observational studies may be 
affected by bias, such as confounding factors or reverse 
causality. (2) Different studies have reached inconsistent 
conclusions. For example, the cohort study by Pin-Hui 
Lee et al. indicated that poor glycemic control had a sig-
nificantly higher hazard of tuberculosis [15]. Conversely, 
the opposite conclusion was reported in a Danish pop-
ulation-based case‒control study, which did not demon-
strate a significant correlation between glycemic traits 
and tuberculosis [55].

In addition, we used several mediators associated with 
lipid metabolism, including HDL-C, LDL-C, TG, and TC. 
We found that elevated HDL-C levels increased the risk 
of tuberculosis. Lipid metabolism, as one of the essential 

metabolic pathways, can serve as a secondary source of 
nutrients for PTB infection, favoring growth and mul-
tiplication against Mtb. Mtb induces macrophage dif-
ferentiation into lipid-loaded foam cells and acquires a 
dormant-like phenotype [56]. Mtb infection forms gran-
ulomas whose core consists of infected macrophages. 
Progression of granuloma infection is frequently accom-
panied by dysregulation of lipid metabolism [57]. It has 
been suggested that HDL-C enhances Mtb infection in 
macrophages [58]. Interestingly, HDL-C plays a dual 
role in the prevention and regulation of PTB infection. 
It has been demonstrated that HDL levels are reduced 
after infection with tuberculosis [16]. This is probably 
due to the capacity of HDL to inhibit the production of 
tumor necrosis factor-alpha (TNF-α), which is critical in 
the immune defense against TB [58]. Therefore, further 
research is still necessary to elucidate the role of HDL-C 
in different states of TB, such as uninfected, initial infec-
tion, asymptomatic state, and active disease.

However, a causal relationship between obesity and 
tuberculosis was not identified, which differed from 
several previous studies. A systematic review showed a 

Fig. 4  MR results for the causal effect of PTB on metabolic factors and obesity. PTB, pulmonary tuberculosis; FBG, fasting blood glucose; HbA1c, glyco-
sylated hemoglobin; FI, fasting insulin; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; TC, total 
cholesterol; BMI, body mass index; WHR, waist-to-hip ratio; SNPs, single-nucleotide polymorphisms; MR, Mendelian randomization; CI, confidence interval; 
OR, odds ratio; IVW, inverse variance-weighted; WM, weighted median; P value for heterogeneity based on Cochran’s Q statistic for IVW and Rücker’s Q 
for MR‒Egger
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negative correlation between BMI and the incidence of 
tuberculosis [59]. However, results from observational 
studies may be subject to confounders and reverse cau-
sality. For instance, it has been demonstrated that there 
was a significant correlation between BMI and anemia in 
patients with PTB, while anaemia as a risk factor for PTB 
was excluded as a confounder in this study [60, 61]. Con-
sequently, the MR analysis draws more robust and sub-
stantiated conclusions without these issues.

To our knowledge, the study is the first to reveal a 
causal association between T1DM and PTB using bidi-
rectional MR analysis. Nevertheless, our study has some 
limitations as well. First, most of the statistics in GWAS 
were from individuals of European ancestry, which may 
have raised concerns about the generalizability of the 
findings to other populations. Ideally, we would repeat 
this association analysis in large GWAS data from 
regions with high PTB prevalence (e.g., Africa and South 
Asia). However, large populations with relevant genomic 
data are not yet available for further study. Second, 
despite our efforts to minimize pleiotropy, it was unlikely 
that all instances of pleiotropy would be eliminated in an 
MR analysis, which could have biased our results. Third, 
a potential limitation of the study was the inability to 
stratify the analyses based on gender, age, and duration of 
T1DM, among other significant variables.

Conclusion
In conclusion, our bidirectional MR study provided 
strong evidence of the causal relationship between 
T1DM, HDL-C, and PTB, while the reverse direction 
indicated no causal associations. Thus, prevention strat-
egies for PTB should include treatment of T1DM and 
control of HDL-C levels, providing an essential basis for 
prevention and comanagement of concurrent T1DM and 
PTB in clinical practice.
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