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Abstract 

Background  Experiencing a hyperglycaemic crisis is associated with a short- and long-term increased risk of mor-
tality. We aimed to develop an explainable machine learning model for predicting 3-year mortality and providing 
individualized risk factor assessment of patients with hyperglycaemic crisis after admission.

Methods  Based on five representative machine learning algorithms, we trained prediction models on data from 
patients with hyperglycaemic crisis admitted to two tertiary hospitals between 2016 and 2020. The models were 
internally validated by tenfold cross-validation and externally validated using previously unseen data from two other 
tertiary hospitals. A SHapley Additive exPlanations algorithm was used to interpret the predictions of the best per-
forming model, and the relative importance of the features in the model was compared with the traditional statistical 
test results.

Results  A total of 337 patients with hyperglycaemic crisis were enrolled in the study, 3-year mortality was 13.6% 
(46 patients). 257 patients were used to train the models, and 80 patients were used for model validation. The Light 
Gradient Boosting Machine model performed best across testing cohorts (area under the ROC curve 0.89 [95% CI 
0.77–0.97]). Advanced age, higher blood glucose and blood urea nitrogen were the three most important predictors 
for increased mortality.

Conclusion  The developed explainable model can provide estimates of the mortality and visual contribution of the 
features to the prediction for an individual patient with hyperglycaemic crisis. Advanced age, metabolic disorders, and 
impaired renal and cardiac function were important factors that predicted non-survival.

Trial Registration Number: ChiCTR1800015981, 2018/05/04.
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Introduction
Hyperglycaemic crisis is one of the most serious acute 
metabolic complications of diabetes and includes three 
subtypes: diabetic ketoacidosis (DKA), hyperosmolar 
hyperglycaemic state (HHS), and mixed syndrome (com-
bined DKA-HHS) [1]. Inpatients with DKA or recur-
rent DKA are all at high risk for all-cause mortality [2]. 
Among diabetic patients, 10% of deaths are caused by 
confirmed or possible DKA or coma [3]. HHS is com-
mon in elderly patients with diabetes mellitus. Despite 
a relatively low incidence, the mortality of hospitalized 
patients with HHS can reach up to 10–20% [4, 5]. Alarm-
ingly, the 30-day mortality in patients with combined fea-
tures of DKA and HHS is approximately 2.7 times higher 
than that in patients with isolated hyperglycaemic crisis 
[6]. In addition to a high risk of short-term mortality, 
patients with hyperglycaemic crisis episode have a higher 
long-term mortality after hospital discharge [1, 7]. At 
present, due to the poor understanding of the pathogen-
esis of hyperglycaemic crisis and the complexity of treat-
ment, there is a lack of powerful indicators for evaluating 
the risk of mortality in patients with hyperglycaemic cri-
sis [6]. Predicting the risk of mortality as well as provid-
ing personalized analysis of the risk factors in patients 
with hyperglycaemic crisis at initial diagnosis may help 
physicians to make correct clinical judgments and select 
the most appropriate strategy of treatment.

Much effort has been put into the development of 
prediction models to predict the risk of mortality for 
patients with hyperglycaemic crisis. Traditionally, lin-
ear models, such as logistic regression model and Cox 
proportional hazard model, have been used to develop 
such prediction models [8–12]. Nevertheless, modern-
high-dimensional and incomplete medical data present 
a challenge to traditional statistical models, and the low 
precision of linear models impedes patient-level use. 
Lacking adequate prediction tools, physicians mainly rely 
on subjective judgement, which is prone to errors and 
biases. Previous studies have applied machine learning 
to establish models for predicting the clinical outcomes 
of patients with diabetic complications and achieved 
promising results [13–15]. Compared with linear models, 
machine learning models can provide more accurate pre-
diction results by fitting high-dimensional and nonlinear 
relationships in the data [16–18]. However, most of the 
developed prediction models were opaque and unex-
plainable. The improvement of model performance also 
brings corresponding disadvantages: these models might 
be perceived as black-box models due to complex com-
putational processes, meaning that the clinician can only 
see the input and output of the model, and it is difficult 
to understand how the predictions are generated, which 
could reduce their acceptance among clinicians [19]. In 

our recent study, we developed an explainable machine 
learning model for predicting amputation rate in patients 
with diabetic foot [20]. The proposal of algorithms that 
could provide explanations for black-box models might 
increase the understanding of the model predictions 
and facilitate clinicians in making more accurate deci-
sions using machine learning models [21]. There is a lack 
of tools to predict long-term mortality in patients with 
hyperglycaemic crisis. In addition, to our knowledge, no 
study has developed a tool to use the machine learning 
model for predicting mortality in patients with hyper-
glycaemic crisis directly interpretable. Of note, the pre-
dictions of machine learning models are expected to be 
transparent to enable physicians to better understand 
and utilize these tools.

Here, we developed a machine learning model for pre-
dicting the 3-year mortality of inpatients with hypergly-
caemic crises. In addition, we utilized a tool to interpret 
the developed black-box machine learning model to 
obtain a method for individualized mortality prediction 
and risk factor analysis for patients with hyperglycaemic 
crisis.

Materials and methods
Study design and participants
For model development and validation, we prospec-
tively collected data from patients with hyperglycaemic 
crises who were hospitalized at four university-affiliated 
tertiary teaching hospitals between May 2016 and May 
2020. All patients were followed up until May 2021. The 
3-year mortality rate was chosen as the prediction tar-
get because the study was designed to predict the long-
term mortality risk of patients, and most of the patients 
included in the study were followed up for 3 years. The 
study was conducted in accordance with the Declara-
tion of Helsinki and protocols were approved by the 
Ethics Committee of Chongqing University Central 
Hospital. Inpatients aged 18 or older diagnosed with 
hyperglycaemic crisis were enrolled in the study. Case 
definition of hyperglycaemic crisis on admission was: 
(1) DKA: plasma glucose ≥ 13.9  mmol/L, positive urine 
ketones or serum ketones, and serum bicarbonate ion 
concentration (HCO3−) ≤ 18  mmol/L or hydrogen ion 
concentration index (PH) ≤ 7.3; (2) HHS: plasma glu-
cose ≥ 33.3  mmol/L, small urine ketones or serum 
ketones, HCO3−  ≥ 15  mmol/L or PH ≥ 7.3, and effec-
tive serum osmolality ≥ 320  mOsm/kg; (3) combined 
DKA-HHS: plasma glucose ≥ 33.3  mmol/L, positive 
urine ketones or serum ketones, HCO3−  ≤ 18 mmol/L or 
PH ≤ 7.3, and effective serum osmolality ≥ 320 mOsm/kg. 
The effective serum osmolality was calculated from the 
following equation: 2 × [Na+ (mEq/L)] + [plasma glucose 
(mmol/L)].
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The blood glucose, serum sodium, serum potassium, 
PH, HCO3−, base excess, serum creatinine, blood urea 
nitrogen, cystatin C, creatine kinase, total cholesterol, 
low-density lipoprotein cholesterol, triglyceride, C-reac-
tive protein, procalcitonin, creatinine kinase MB isoen-
zyme (CK-MB), alanine aminotransferase, and aspartate 
aminotransferase were measured using an automatic 
biochemical analyzer (AU5821, Beckman Coulter, USA). 
Hemoglobin A1c was measured by high-performance 
liquid chromatography (BC-6800, Mindray, Shenzhen, 
China). Cardiac troponin I was measured by chemilumi-
nescence immunoassay, using DXI800 (Beckman Coulter, 
USA).β-hydroxybutyrate was measured using colorimet-
ric enzymatic reaction (D-3-hydroxybutyrate kit, Ranbut, 
Randox Laboratories). White blood cells, neutrophils, 
lymphocyte, and platelet were determined by an auto-
matic blood cell analyzer (BC-6800, Mindray, Shenzhen, 
China).

There were 41 input variables incorporated into this 
study to determine the prediction models, including 
demographic features, clinical and at-admission labora-
tory data, and comorbidities. The data were collected by 
reviewing electronic medical records (EHRs). 9 patients 
with missing values of variables greater than 30% and 14 
patients who were lost to follow-up were excluded. The 
participants were divided into two groups: data from two 
tertiary teaching hospitals were used as the training set 
for model training, and data from the two other tertiary 
teaching hospitals were used as the test set for external 
validation.

Statistical analyses
Statistical analysis was applied among the groups. Con-
tinuous variables are presented as the mean ± standard 
deviation when data followed a normal distribution or as 
the median and interquartile range when the continuous 
variables were not found to be normal, and categorical 
variables were expressed as numbers (%). To evaluate sig-
nificant differences between groups, the t test, Kruskal‒
Wallis test, and chi-squared test were used for normal 
continuous, nonnormal continuous, and categorical vari-
ables, respectively. A P value < 0.05 was considered statis-
tically significant.

Model development
The data were preprocessed before training the predic-
tion model. Box diagrams was used to eliminate outliers 
from the raw dataset, the k-nearest neighbour algorithm 
was used for filling in the missing values, and the Z Score 
was utilized to normalize continuous variables.. To con-
struct the prediction model, five algorithms were used: 
logical regression (LR), support vector machine (SVM), 
random forest (RF), light gradient boosting machine 

(LightGBM), and deep neural networks (DNNs). The 
DNN architecture used in this study was a feed-forward 
neural network. LR and SVM are classical machine 
learning algorithms commonly used in previous studies 
[22, 23]. RF and LightGBM are powerful algorithms in 
the machine learning area and are currently considered 
state-of-the-art algorithms for prediction with tabular 
data [24–26]. DNNs belong to an important branch of 
machine learning algorithms, achieving excellent per-
formance in many fields, such as pattern recognition 
and natural language processing [18, 27]. Therefore, the 
above five algorithms were used for model building. 
Afterwards, tenfold cross-validation and Bayesian hyper-
parameter optimization were utilized for model training, 
internal validation and hyperparameter tuning. The gen-
eralization capacity of hyperparameter combinations was 
improved by tenfold cross-validation, and the efficiency 
of finding the optimal hyperparameter combination was 
improved by Bayesian hyperparameter optimization. 
Additional details on hyperparameter setting and model 
architecture are provided in Additional file 1: Fig. S1 and 
Tables S1–S6.

After model training was performed, the prediction 
ability of the models was evaluated and compared in 
the test set according to the evaluation metrics, includ-
ing area under the receiver-operating-characteristic 
curve (AUC), sensitivity, specificity, positive predictive 
value (PPV) and negative predictive value (NPV). Con-
fidence intervals (CIs) were obtained by resampling the 
test set 1000 times (bootstrapping) and averaging the 
performance.

The best performing model was selected as the pre-
diction model, and Platt scaling was further applied to 
calibrate the predicted probability of the best performing 
model to make it close to the observed probabilities. The 
test set was further divided in a 1:1 ratio into a calibration 
set for model calibration and a new test set for evaluat-
ing the performance of model calibration. The calibration 
curve and Brier score were used to assess the coherence 
between the predicted and observed probabilities of the 
prediction model.

Model explanation
The Shapley additive explanations (SHAP) algorithm was 
applied to the calibrated model to obtain explanations 
of the predictions of the model. The SHAP algorithm 
is one of the most popular model-agnostic algorithms 
for interpreting black-box model predictions [28, 29]. 
SHAP values were obtained by the SHAP algorithm, 
which provides interpretation of individual predictions. 
A SHAP value represents, given a set of feature values, 
how much a single feature value influences the difference 
between the actual prediction and the average prediction 
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in its interaction with other feature values. Therefore, the 
mean prediction of the model plus the sum of the SHAP 
values for all features are consistent with the predicted 
result. Importantly, the SHAP value for a feature is not 
isolated but obtained by interacting with other features, 
which makes it different from the feature weight in the 
traditional generalized linear model.

To verify the rationality of the interpretation of the 
model predictions acquired by the SHAP algorithm, we 
first utilized the SHAP algorithm to obtain and visual-
ize the overall effect of features on the predictions, that 
is, the contribution and relative importance ranking of 
each feature to the predictions. For further validation and 
comparison, we divided the patients in the training set 
into a survival group and a nonsurvival group according 
to their clinical outcomes and analysed the differences 
in features between the groups by statistical methods. In 
addition, based on proving the rationality of the explana-
tions obtained by the SHAP algorithm, we further line-
arly mapped SHAP values to the probability of increased 
or decreased mortality and proposed a personalized mor-
tality risk factor analysis method specific to patients with 
hyperglycaemic crisis, which visualized the contribution 
of each feature to the prediction in probability.

Results
For model development, 257 patients with hyperglycae-
mic crisis from two hospitals were enrolled. The baseline 
characteristics of these patients are depicted in Table 1. 
In the training set, the median age was 56  years (IQR 
40.3–70.0), and 152 (59.1%) were male. Death occurred 
in 31 (12.1%) patients within the study period. To evalu-
ate the external validity, the models were applied in the 
external test set, comprising 80 patients with hypergly-
caemic crisis from two hospitals that were independent 
of the training set. In the test set, the receiver operat-
ing characteristic curve and AUC of the five models are 
shown in Fig. 1A (AUC = 1 indicates perfect prediction; 
AUC = 0 indicates random prediction). The other five 
evaluation metrics, including accuracy, sensitivity, spec-
ificity, NPV and PPV, for the five models are presented 
in Table  2. Overall, the findings demonstrated that the 
LightGBM model performed best among the five pre-
diction models, with an AUC of 0.89 (95% CI 0.77, 0.97). 
The corresponding accuracy was 0.83 (0.74, 0.90), sen-
sitivity was 0.74 (0.47, 0.94), specificity was 0.85 (0.76, 
0.93), PPV was 0.52 (0.31, 0.74), and NPV was 0.94 (0.87, 
0. 99). Therefore, the LightGBM model was selected as 
the best predictive model. The prediction probability of 
the LightGBM model was calibrated to make it close to 
the observed probability. The calibration plot indicated 
good agreement between the predicted and observed 

probabilities of the LightGBM model with a curve close 
to the 45° line, and the Brier score was 0.10 (0.05, 0.17) 
(Fig. 1B).

The contribution of each of the 41 features in the cali-
brated LightGBM model is shown in Fig. 2. The features 
were ranked by their relative importance to mortality 
prediction according to the SHAP values of the model 
predictions. It is not surprising that age was ranked as 
the most important feature for the prediction model, 
followed by blood glucose and blood urea nitrogen. In 
addition, taking the effect of age on the prediction as an 
example, older age was associated with a higher risk of 
death, and younger age drives the predictions towards 
survival. A similar explanation can be applied to other 
features, and most of the interpretation of features was 
consistent with clinical experience and previous evi-
dence. Of note, features can drive the prediction in either 
direction (increase or decrease mortality prediction) 
in our explainable prediction model, which is different 
from the previous mortality risk scoring system based 
on a generalized linear model in which features can only 
drive mortality prediction in a single direction. As shown 
in Table 3, the results of statistical analysis revealed that 
the 9 most important features for the LightGBM model 
were significantly different between the survival group 
and the nonsurvival group in the training set (P < 0.05). 
Compared to the survival group, age, blood glucose, 
serum creatinine, blood urea nitrogen, cystatin C, effec-
tive serum osmolality, CK-MB, alanine aminotransferase, 
serum sodium, PH, HCO3 − and cardiac troponin I were 
significantly higher in the nonsurvival group (P < 0.05). 
However, hemoglobin A1c level was surprisingly signifi-
cantly lower in the nonsurvival group than survival group 
(P < 0.05). An increasing trend of β-hydroxybutyrate was 
unexpectedly indicated in the survival group (P = 0.045). 
Therefore, the traditional statistical test results and 
the model interpretation results corroborated each 
other, which proved the rationality and accuracy of the 
interpretation of features acquired by the SHAP algo-
rithm. Based on this evidence, we mapped SHAP values 
and proposed a personalized risk factor analysis tool 
for explaining the mortality prediction for a particu-
lar patient with hyperglycaemic crisis, which is a scale 
from 0 to 1, visualizing the contribution of each feature 
to the prediction in probability. We showed the applica-
tion of the personalized risk factor analysis method in 
one deceased and one surviving patient with hypergly-
caemic crisis during the follow-up period in the test set 
(Fig.  3). In the case of the deceased patient, the patient 
was an 88-year-old female with a history of septic shock 
and acute kidney injury. The model predicted that the 
risk of mortality of the patients was 0.623. Advanced age 
(88 years) drove a 0.58 increase in the risk of mortality, 
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Table 1  Baseline characteristics of patients with hyperglycaemic crisis in the training set and test set

Variables Training set
(n = 257)

Test set
(n = 80)

Demographic data

Age, years 56.0 (40.3, 70.0) 51.0 (35.0, 61.0)

Sex, %

 Male 152 (59.1) 46 (57.5)

 Female 105 (40.9) 34 (42.5)

Body mass index, kg/m2 22.7 (20.1, 25.0) 22.8 (20.6, 26.1)

Diabetes type, %

 Type 1 37 (14.4) 14 (17.5)

 Type 2 220 (85.6) 66 (82.5)

Clinical and laboratory data

Blood glucose, mmol/L 33.1 (21.6, 33.6) 27.3 (20.6, 40.2)

β-hydroxybutyrate, mmol/L 3.80 (1.50, 6.00) 5.60 (3.40, 6.85)

Hemoglobin A1c, % 11.6 (10.0, 13.5) 12.8 (11.0, 14.3)

Triglyceride, mmol/L 1.95 (1.33, 3.02) 1.62 (1.10, 3.30)

Total cholesterol, mmol/L 4.80 (3.80, 6.27) 4.50 (3.53, 5.51)

LDL-C, mmol/L 2.57 (1.78, 3.37) 2.53 (1.66, 3.19)

Serum creatinine, umol/L 82.0 (58.0, 144.1) 79.5 (57.6, 120.8)

Blood urea nitrogen, mmol/L 7.86 (5.40, 15.40) 7.81 (5.15, 16.10)

Cystatin C, mg/L 1.16 (0.71, 2.20) 0.74 (0.61, 1.21)

Creatine kinase, U/L 95.0 (58.0, 208.0) 83.0 (46.6, 123.6)

Cardiac troponin I, μg/L 0.01 (0.00, 0.04) 0.01 (0.01, 0.03)

CKMB, U/L 14.0 (8.3, 20.8) 16.6 (11.2, 25.6)

Alanine aminotransferase, IU/L 19.0 (13.0, 30.0) 18.0 (12.1, 29.6)

Aspartate aminotransferase, IU/L 18.0 (13.0, 28.3) 17.8 (13.2, 26.8)

C-reactive protein, mmol/L 9.10 (4.20, 55.66) 4.56 (0.66, 14.30)

Procalcitonin, ng/ml 0.47 (0.08, 2.25) 0.15 (0.10, 2.20)

White blood cells, × 109/L 10.6 (6.8, 14.8) 7.24 (10.89, 15.71)

Percentage of neutrophils, % 84.0 (74.0, 90.0) 86.5 (78.6, 91.4)

Lymphocyte, × 109/L 1.06 (0.62, 1.59) 1.23 (0.76, 1.91)

Platelet, × 109/L 196.0 (153.0, 259.0) 214.5 (169.8, 284.3)

Serum sodium, mmol/L 142.3 (135.2, 149.5) 136.5 (133.0, 142.0)

Serum potassium, mmol/L 4.03 (3.66, 4.66) 4.15 (3.64, 4.92)

Serum chloride, mmol/L 100.1 (95.8, 106.0) 104.5 (97.8, 112.0)

PH 7.31 (7.22, 7.38) 7.30 (7.19, 7.36)

Base excess, mmol/L − 7.30 (− 15.70, − 2.70) − 9.90 (− 17.83, − 6.55)

HCO3−, mmol/L 14.9 (9.2, 18.0) 14.5 (8.3, 16.9)

Effective serum osmolality, mOsm/kg 314.0 (293.0, 335.5) 299.0 (289.0, 327.2)

Medical history

Infection, n (%) 147 (57.2) 30 (37.5)

Septic shock, n (%) 7 (2.7) 0 (0.0)

Hypertension, n (%) 66 (25.7) 16 (20.0)

Coronary heart disease, n (%) 29 (11.3) 8 (10.0)

Heart failure, n (%) 12 (4.7) 0 (0.0)

Cerebral infarction, n (%) 44 (17.1) 4 (5.0)

Dementia, n (%) 5 (1.9) 0 (0.0)

Diabetic nephropathy, n (%) 43 (16.7) 11 (13.8)

Acute kidney injury, n (%) 8 (3.1) 6 (7.5)

Tumor, n (%) 3 (1.2) 3 (3.8)

Death, n (%) 31 (12.1) 15 (18.8)
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while relatively low hemoglobin A1c reduced the risk of 
mortality by 0.32. A similar explanation can be applied to 
other features. The prediction was driven by 41 features 
used for model training. The sum of the SHAP values for 
all features plus the baseline risk equals the predicted risk 
of mortality. The baseline risk (E[f(X)]) was obtained by 
calculating the average predicted risk of mortality among 
all patients in the training set. Thus, SHAP algorithm 
made our model explainable both in terms of the relative 
importance of individual features for survival of patient 
with hyperglycaemic crisis and those at patient level.

Discussion
Experiencing a hyperglycaemic crisis is associated with 
a short- and long-term increased risk of mortality [1, 6, 
7]. However, due to the complex pathogenesis of hyper-
glycaemic crisis, available international guidelines for the 
diagnosis and treatment of hyperglycaemic crisis are not 
consistent [4, 30]. In addition, there is a lack of strong 
indicators to assess the risk of mortality in patients with 
hyperglycaemic crisis. Therefore, the development of 

Table 1  (continued)
LDL-C low-density lipoprotein cholesterol, CKMB creatinine kinases MB isoenzyme, PH hydrogen ion concentration index, HCO3− serum bicarbonate ion concentration

Fig. 1  Discrimination and calibration performance of the models. A Receiver operating characteristic curves for the LR, SVM, RF, LightGBM, and 
DNN models. B Calibration curve for the LightGBM model

Table 2  The values of the evaluation metrics of the models in the test set

LR logical regression, SVM support vector machine, RF random forest, LightGBM light gradient boosting machine, DNN deep neural network algorithm, NPV negative 
predictive value, PPV positive predictive value

AUC​ Accuracy Sensitivity Specificity PPV NPV

LR 0.64 (0.47, 0.79) 0.76 (0.69, 0.85) 0.20 (0.00, 0.44) 0.89 (0.81, 0.96) 0.29 (0.00, 0.60) 0.83 (0.74, 0.92)

SVM 0.70 (0.52, 0.86) 0.76 (0.65, 0.85) 0.47 (0.22, 0.73) 0.83 (0.73, 0.91) 0.39 (0.18, 0.63) 0.87 (0.77, 0.95)

RF 0.87 (0.78, 0.95) 0.80 (0.70, 0.88) 0.67 (0.42, 0.91) 0.83 (0.73, 0.91) 0.48 (0.28, 0.69) 0.92 (0.85, 0.98)

LightGBM 0.89 (0.77, 0.97) 0.83 (0.74, 0.90) 0.74 (0.47, 0.94) 0.85 (0.76, 0.93) 0.52 (0.31, 0.74) 0.94 (0.87, 0. 99)
DNN 0.64 (0.54, 0.87) 0.81 (0.73, 0.89) 0.26 (0.06, 0.53) 0.94 (0.88, 0.99) 0.50 (0.11, 0.88) 0.85 (0.76, 0.92)

Blood glucose

Blood urea nitrogen

Cystatin C

Serum sodium

Hemoglobin A1c

Serum creatinine

Cardiac troponin I

Alanine aminotransferase

Fig. 2  The impact of the input features on predictions. Each dot 
represents the effect of a feature on the prediction for one patient. 
The redder the colour of the dots, the higher the value of the features, 
and the bluer the colour of the dots, the lower the value of the 
features. Dots to the left x-axis represent patients with values of the 
features decreasing mortality prediction, and dots to the right x-axis 
represent patients with values of the features increasing mortality 
prediction
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Table 3  Baseline characteristics of patients with hyperglycaemic crisis in the training set by clinical outcomes

LDL-C low-density lipoprotein cholesterol, CKMB creatinine kinases MB isoenzyme, PH hydrogen ion concentration index, HCO3− serum bicarbonate ion concentration. 
P value < 0.05 was considered statistically significant

Variables Survival group
(n = 226)

Nonsurvival group
(n = 31)

Demographic data

Age, years 54.5 (37.0, 67.3) 79.5 (65.0, 86.3)  < 0.001

Sex, % 0.194

 Male 137 (60.6) 15 (48.4)

 Female 89 (39.4) 16 (51.6)

Body mass index, kg/m2 22.8 (20.2, 25.0) 17.5 (20.7, 25.0) 0.076

Diabetes type, % 0.015

 Type 1 37 (16.4) 0 (0.0)

 Type 2 189 (83.6) 31 (100.0)

Clinical and laboratory data

Blood glucose, mmol/L 30.1 (20.2, 33.3) 33.3 (33.3, 38.4)  < 0.001

β-hydroxybutyrate, mmol/L 4.13 (1.51, 6.20) 3.05 (0.48, 4.60) 0.045

Hemoglobin A1c, % 11.8 (10.2, 13.6) 10.6 (8.6, 12.5) 0.038

Triglyceride, mmol/L 1.89 (1.31, 3.11) 2.10 (1.40, 2.71) 0.386

Total cholesterol, mmol/L 4.80 (3.78, 6.26) 4.39 (3.80, 6.30) 0.675

LDL-C, mmol/L 2.52 (1.73, 3.35) 2.86 (2.01, 3.74) 0.159

Serum creatinine, umol/L 75.5 (56.8, 131.3) 165.0 (87.2, 334.8)  < 0.001

Blood urea nitrogen, mmol/L 7.50 (5.18, 13.31) 19.5 (11.0, 28.2)  < 0.001

Cystatin C, mg/L 1.10 (0.69, 1.88) 1.88 (1.28, 3.64)  < 0.001

Creatine kinase, U/L 50.0 (25.0, 85.1) 32.8 (5.8, 139.8) 0.306

Cardiac troponin I, μg/L 58.5 (30.3, 109.0) 44.0 (20.5, 177.8) 0.477

CKMB, U/L 87.0 (55.0, 187.0) 150.0 (76.5, 571.3) 0.008

Alanine aminotransferase, IU/L 0.01 (0.00, 0.03) 0.04 (0.00, 0.10) 0.021

Aspartate aminotransferase, IU/L 18.0 (12.0, 28.0) 19.0 (14.0, 31.0) 0.200

C-reactive protein, mmol/L 7.90 (3.81, 47.45) 19.1 (4.8, 145.0) 0.048

Procalcitonin, ng/ml 0.40 (0.05, 2.14) 0.71 (0.11, 6.80) 0.063

White blood cells, × 109/L 10.5 (6.7, 14.6) 12.7 (7.1, 17.8) 0.271

Percentage of neutrophils, % 83.7 (73.9, 89.7) 84.1 (76.7, 93.4) 0.136

Lymphocyte, × 109/L 1.08 (0.63, 1.60) 1.00 (0.54, 1.50) 0.513

Platelet, × 109/L 202.0 (153.0, 261.5) 179.0 (133.5, 207.3) 0.085

Serum sodium, mmol/L 140.3 (134.7, 148.2) 149.0 (142.5, 159.4) 0.001

Serum potassium, mmol/L 4.03 (3.68, 4.66) 4.02 (3.62, 4.75) 0.759

Serum chloride, mmol/L 99.9 (95.6, 105.5) 102.5 (96.8, 111.7) 0.220

PH 7.30 (7.22, 7.37) 7.38 (7.25, 7.41) 0.030

Base excess, mmol/L − 7.50 (− 2.70, − 16.43) − 7.00 (− 2.50, − 12.00) 0.682

HCO3−, mmol/L 14.6 (7.8, 18.0) 17.6 (13.8, 21.2) 0.031

Effective serum osmolality, mOsm/kg 310.2 (292.0, 330.3) 327.0 (322.0, 353.0)  < 0.001

Medical history

Infection, n (%) 122 (54.0) 25 (80.6) 0.005

Septic shock, n (%) 5 (2.2) 2 (6.5) 0.174

Hypertension, n (%) 57 (25.2) 9 (29.0) 0.649

Coronary heart disease, n (%) 24 (10.6) 5 (16.1) 0.363

Heart failure, n (%) 10 (4.4) 2 (6.5) 0.616

Cerebral infarction, n (%) 32 (14.2) 12 (38.7) 0.001

Dementia, n (%) 3 (1.3) 2 (6.5) 0.053

Diabetic nephropathy, n (%) 34 (15.0) 9 (29.0) 0.050

Acute kidney injury, n (%) 6 (2.7) 2 (6.5) 0.254

Tumor, n (%) 3 (1.3) 0 (0.0) 0.519
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more effective methods to predict the risk of mortal-
ity, create individualized risk and benefit evaluations in 
patients with hyperglycaemic crises at initial diagnosis, 
which are particularly important to identify the best ther-
apeutic strategies and improve the prognosis.

Here, we developed an explainable risk prediction 
model providing predictions and individualized risk fac-
tor assessment of the 3-year mortality of patients with 
hyperglycaemic crisis after admission. In the model 
building process, we selected five representative machine 
learning algorithms, including LR, SVM, RF, LightGBM, 
and DNN, to obtain the best prediction model. The 
LightGBM model performed the best of the five models 
evaluated in an external test set, with an AUC of 0.89. We 
further calibrated the LightGBM model to obtain a more 
reliable model. The SHAP algorithm was used to inter-
pret the calibrated LightGBM model to obtain how each 
feature drives the prediction of the model. On the basis 
of verifying the effectiveness of the analytical method 

by comparing with the statistical test results, we further 
proposed a personalized mortality risk factor assessment 
method specific to patients with hyperglycaemic crisis. In 
the interpretation obtained by SHAP algorithm, the influ-
ence of each feature on the predictions is not isolated, 
but interacts with other features, which is related to the 
calculation method of SHAP value, and makes it differ-
ent from the feature weight in the traditional generalized 
linear model.Thus, the developed explainable model can 
not only predict mortality but also provide a personalized 
risk factor assessment tool. Such an explainable model is 
a more useful tool than scoring systems based on gener-
alized linear models that are currently implemented.

Most of the prediction tools constructed in past studies 
are based on generalized linear models, such as logistic 
regression models and Cox proportional hazard models 
[10, 11, 31]. However, the rapid development of informa-
tion technology brings high-dimensional and nonlinear 
data, which challenges the traditional generalized linear 
model. Machine learning provides a powerful and novel 
method to extract information from complex medical 
data and develop more accurate predictions. That is, we 
can only obtain the input of the model and the output of 
the predictions. It is difficult to understand the details 
of how machine learning models analyse data and make 
decisions, which limited the application of the models at 
the individual level. A representative score called PHD 
was developed based on a generalized linear model by 
Huang et al. [10], which could be used to predict 30-day 
mortality risk and classify risk and disposition in patients 
with hyperglycaemic crisis. Since the variables we 
selected were different from the PHD score, the model 
we developed predicted the 3-year mortality of patients 
with hyperglycaemic crisis after admission. Therefore, 
we could not directly compare our model with the PHD 
score. However, an external validation study revealed that 
the AUC of the PHD score ranged from 0.357 to 0.727 
[9]. In comparison, the AUC of the models developed in 
this study ranged from 0.63 to 0.89 in an external valida-
tion dataset. In addition, the developed LightGBM model 
also outperformed the conventional logistic regression 
model constructed in our study in the external test data 
(Fig.  1A, AUC of 0.89 vs. 0.63). We thus consider our 
model superior to traditional methods.

In addition, we used the SHAP algorithm to explain the 
black-box model to quantify and visualize the features 
that drive the predictions so that it not only had bet-
ter prediction ability but also had transparency similar 
to that of the simple linear model. The tools established 
in this study combined the advantages of the complex 
machine learning model and simple linear model, solv-
ing the problems of insufficient prediction ability of the 
generalized linear model and black box nature of the 

= 0.26

= 0.12

= 0.12

= 0.61
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Serum sodium

Hemoglobin A1c
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Fig. 3  Examples of personalized risk factors. A An example of 
personalized risk factor analysis for a patient in the test set (clinical 
outcome was death). B An example of personalized risk factor 
analysis for a patient in the test set (actual clinical outcome was 
survival)
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machine learning model. The model we developed pro-
vided explanations of the risk factors that drive the model 
prediction, both in terms of the importance of individual 
features to the overall mortality prediction and contribu-
tion at the patient level. A comprehensible model allows 
clinicians to combine the predictions with their exper-
tise to facilitate decision-making and assist clinicians in 
interventions [32, 33].

The effect of most features on the prediction is con-
sistent with clinical experience and previous evidence. 
For example, advanced age, metabolic disorders, and 
impaired renal and cardiac function can predict for non-
survival. Advanced age was the most important risk fac-
tor for mortality. There is substantial evidence that the 
physical function and resistance of patients decrease with 
age, which is more likely to increase the risk of mortality 
[12, 34, 35]. Severe metabolic disorders (elevated levels 
of blood glucose, effective serum osmolality, and serum 
sodium) may lead to confusion and even coma, which 
is associated with an increased risk of mortality [5, 36]. 
Likewise, there is consistent evidence that impaired renal 
(elevated levels of blood urea nitrogen, cystatin C, and 
serum creatinine,) and cardiac function (elevated levels 
of cardiac troponin I) increase the risk of mortality [1, 34, 
37–39]. In addition, reduced levels of HbA1c drove the 
prediction towards nonsurvival. The effect of HbA1c on 
the prediction did not seem to live up to expectations. 
One reason for this counterintuitive issue might be that 
patients in the survival group had significantly better 
renal function than those in the nonsurvival group, and 
there is evidence that patients with chronic renal failure 
generally had a lower red blood cell (RBC) survival rate 
[40]. In addition, after treatment with erythropoietin, 
the newly generated RBCs lead to a further decrease in 
HbA1c [41]. An  increasing trend of β-hydroxybutyrate 
was unexpectedly found in the survival group. It seems 
that it is a protective factor for patients with hyperglycae-
mic crisis. Previous studies evidence supports that blood 
β-hydroxybutyrate can reduce renal ischemia and reper-
fusion injury by increasing the upstream regulator fork-
head transcription factor O3 and reducing caspase-1 and 
pro-inflammatory cytokines, thereby reducing cell death 
[42, 43].

Age was ranked as the most important feature for the 
model, followed by features related to metabolic disor-
ders, cardiac and renal dysfunction. In a recent study, 
acute hyperglycaemic crisis episode impact on survival 
in individuals with diabetic foot ulcer using a machine 
learning approach, which also revealed that individual 
characteristics evaluated by Charlson Comorbidity Index 
(CCI) and acute organ injury played a vital role in dis-
ease prognosis [44]. The nine most important features 
for the prediction were significantly different between the 

survival group and nonsurvival group in the training set. 
Therefore, the effect of features on the predictions is con-
sistent with the traditional statistical test results. Impor-
tantly, the developed explainable model can provide the 
relative importance of individual features for survival of 
patient and those at patient level, which makes it superior 
to traditional statistical tests that can only test for signifi-
cant differences between groups. Admittedly, there are 
some limitations in our study. First, although multicentre 
data were used, due to the low morbidity of hyperglycae-
mic crisis, the amount of data was relatively small, which 
may lead to bias in the model. Second, in order to enable 
the models to obtain more comprehensive information 
and improve the performance of the tree-based models, 
our models contained up to 41 features. However, due 
to the limitation of data acquisition, the number of vari-
ables selected for the study is limited.. Third, the SHAP 
algorithm cannot address model bias, and the influence 
of features on the predictions is not equal to the associa-
tion in the causal chain. Finally, Although the model is 
explainable, some features, such as age, cannot be manip-
ulated by physicians. However, these insights into the 
relationship between features and predictions may guide 
our search for causality.

Conclusions
In summary, we developed an explainable machine learn-
ing model for predicting 3-year mortality and providing 
individualized risk factor assessment of inpatients with 
hyperglycaemic crises as well as hospital discharge, and 
the model was externally validated in an independent 
dataset. The interpretation results of the model revealed 
that more attention should be given to the variables 
related to metabolism and renal and cardiac function in 
the treatment of hyperglycaemic crisis, which played an 
important role in mortality through the model predic-
tion. Transparent and explainable model predictions 
would help gain the trust of clinicians and facilitate deci-
sion-making by allowing physicians to evaluate whether 
the decision-making process of the model is consistent 
with scientific evidence and clinical experience. However, 
before this kind of tool used in the clinic, prospective 
studies are needed to be verified in the future.
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