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Abstract 

Future targets are a promising prospect to overcome the limitation of conventional and current approaches by 
providing secure and effective treatment without compromising patient compliance. Diabetes mellitus is a fast-
growing problem that has been raised worldwide, from 4% to 6.4% (around 285 million people) in past 30 years. This 
number may increase to 430 million people in the coming years if there is no better treatment or cure is available. 
Ageing, obesity and sedentary lifestyle are the key reasons for the worsening of this disease. It always had been a vital 
challenge, to explore new treatment which could safely and effectively manage diabetes mellitus without compro-
mising patient compliance. Researchers are regularly trying to find out the permanent treatment of this chronic and 
life threatening disease. In this journey, there are various treatments available in market to manage diabetes mellitus 
such as insulin, GLP-1 agonist, biguanides, sulphonyl ureas, glinides, thiazolidinediones targeting the receptors which 
are discovered decade before. PPAR, GIP, FFA1, melatonin are the recent targets that already in the focus for develop-
ing new therapies in the treatment of diabetes. Inspite of numerous preclinical studies very few clinical data available 
due to which this process is in its initial phase. The review also focuses on the receptors like GPCR 119, GPER, Vaspin, 
Metrnl, Fetuin-A that have role in insulin regulation and have potential to become future targets in treatment for dia-
betes that may be effective and safer as compared to the conventional and current treatment approaches.
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Graphical Abstract

Introduction
Diabetes mellitus (DM) is a group of metabolic illnesses 
characterized by a constant increase in blood sugar con-
centration in which the pancreas is not able to produce 
enough insulin from β-cells or the insulin is unable to 
bind to its receptors due to which there is an increase 
in the amount of blood glucose level [1]. Recent studies 
predict that the prevalence of diabetes in adults will rise 
from 4% in 1995 to 6.4 per cent by 2025, data was col-
lected from recent surveys [2]. Currently DM is being 
treated by using anti-diabetic drugs like metformin, sul-
fonylurea, thiazolidinedione or DPP-4 inhibitors [3]. 
However, these medications are unable to control diabe-
tes completely, and research is ongoing to develop a bet-
ter treatment. Receptors are chemical structures made up 
of proteins that receive and transmit signals in biological 
systems [4]. These are some of the receptors and drugs 
that are now being employed in the treatment of diabetes 
for e.g. Insulin [5], GLP-1 [6], PPAR’s [7], Biguanides [8], 
Sulphonylureas [5], Glinides [5], Thiazolidinediones [5], 
Gliptins [5], α- Glucosidase inhibitors [5], Amylin ana-
logues [5], SGLT-2 [9], Dopamine D-2 agonists [10].

When blood glucose levels reach high, β cells of the 
pancreas are participating actively and release the insu-
lin which subsequently attaches to its receptor to acti-
vate it. Exo protease carboxypeptidase and pro-hormone 
convertases (PC I and PC 2) synthesize insulin from 
pro-insulin. These enzymes are accountable for the gen-
eration of insulin and C-peptide [11]. Insulin allows the 
(GLUT4) to be translocated to the cell, due to which 
body cells (adipose/skeletal muscle cells) consume some 

extra glucose. This functions in the regularization of 
blood glucose levels [12].

There are also other novel targets for diabetes mel-
litus control that could be exploited, such as GPCR 119 
[13], GPER [14], 11β-hydroxysteroid dehydrogenase 1 
[15], Vaspin [16], Metrnl [17], PEDF [18], Fetuin-A [19], 
ACRP 30(AdipoQ) [20], Visfatin, Melatonin [21], GIP 
[22], GPCR [23]. These targets could be the future of the 
diabetes treatment.

Conventional targets in diabetes
Conventional targets are the agents that are being used 
in the market for a long time for the treatment of dia-
betes but they are limited in number and have several 
disadvantages like weight gain, hypoglycemia, etc. also 
they only can manage the condition and delay the com-
plications. They work by maintaining blood glucose lev-
els, such as Biguanides which decreases glucose output 
and increases glucose utilization in skeletal muscles and 
liver. SGLT-2 inhibitors that increases the glucose excre-
tion from the kidney. Α- Glucosidase inhibitors helps in 
decreasing the glucose and free fatty acids absorption 
from intestine. Sulphonyl ureas increases the insulin 
release and sensititvity from pancreas. 2,4- thiazolidin-
ediones decreases the secretion of FFA from the fats cells 
(Fig. 1).

Recent targets in diabetes
Recent targets are the receptors and mediators that are 
recently being targeted in the discovery of new agents for 
diabetes treatment. Lots of in-silico, in-vitro, in-vivo and 
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clinical studies have been already done by targeting these 
receptors.

PPAR (Peroxisome proliferator‑activated receptors)
Peroxisomes are the sub cellular organelles that are found 
in animal or human cells and play an emerging role in 
metabolic procedures like the metabolism of free fatty 
acids, cholesterol [24] and lipids to improve insulin sen-
sitivity in the body. Peroxisome proliferator-activated 
receptors or PPARs functions as the transcription fac-
tors regulating the expression of genes which is divided 
into the three types; PPAR α, PPAR-γ, and PPARβ/δ 
[25]. PPAR- γ agonists (Thiazolidinediones) activates the 
receptor and improve overall insulin sensitivity in the 
body. After activating, they reduce free fatty acid levels 
in the blood also changes the adipokines levels, which 
is facilitated by lowering glucose synthesis in the liver, 
improving glucose intake in skeletal muscle & adipose 
tissues, & increasing insulin release from the pancreas 
(Fig. 2) [26].

GIP (Glucose‑dependent insulinotropic polypeptide)
GIP is one of the incretin hormones, located in the 
β-cells, adipose tissue & in brain [27] where it plays an 
important role in the type-2 diabetes mellitus and other 
metabolic disorders (Fig.  3) [28, 29] by boosting the 

insulin response which is triggered by the post-prandial 
rise in glycemia [28].

Mechanism
GIP performs its insulinotropic action by attaching to 
the GIP receptor (GIPR) which increases the intracellu-
lar (cAMP) levels. Increased levels of cAMP activate the 
Protein kinase-A (PKA) & exchange protein activated 
cAMP2 (EPAC2). Depolarization of the voltage-gated 
 Ca+ channels allows the rise of intracellular  Ca2+ concen-
tration that activates the  Ca2+ from intracellular stores by 
PKA and EPAC2 mechanisms. The increase in  Ca2+ con-
centration promotes the transcription of the proinsulin 
gene, thus help in rising the insulin secretion from β-cells 
(Fig. 4) [30].

G‑Protein coupled receptor (GPCR 119)
GPR119 is a G-protein coupled receptor of Class-I [31], 
found in the muscles, liver [32] along with the β-cells of 
the pancreas [33]. The activation of GPR119 may simi-
larly enhance insulin production just like incretin hor-
mones [34, 35] and show the positive effects in insulin 
secretion when the agonists attached to its binding site 
[36, 37]. GPR119 acts in two different ways to improve 
glucose homeostasis, one is the direct effect on glucose-
activated insulin release in β-cells & an indirect effect on 

Fig. 1 Roles of different conventional targets in diabetes mellitus
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the release of GLP-1 and GIP in enteroendocrine cells 
(Fig. 5) [38–40].

FFA 1 (Free fatty receptor‑1)
FFA1 are the receptors that belong to the Class-A G-pro-
tein coupled receptor, also known as G- protein coupled 
receptor-40 [41]. Basically, FFA1 (Table  1) are found 

in the pancreatic cells, intestinal cells also found in the 
taste buds and central nervous system cells in mammals 
(Fig. 6) [42].

In an ex-vivo study, using beta-cell lines of mouse islets, 
it is found that the FFA1 receptor affects the lipid and 
glucose metabolism [43] and increases the insulin secre-
tion from beta-cell of the pancreas [44]. FFA1 affects 

Fig. 2 Mechanism of PPAR

Fig. 3 Role of GIP in diabetes
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the blood glucose level by two pathways: By Indirectly 
increasing incretin hormones as well as directly promot-
ing insulin release from pancreatic β-cells (Fig.  7) [44, 
45].

Melatonin
Melatonin is a neuroendocrine hormone, released 
from the pineal gland at night [48]. It is found that the 
melatonin is also responsible for glucose regulation and 

Fig. 4 GIP mediated mechanism for insulin secreation from β-cells

Fig. 5 Mechanism of GPR119
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insulin release from pancreas [49, 50] which turns it into 
a possible goal for the management of the diabetes mel-
litus. It performs its pharmacological actions by inter-
acting with the melatonin receptors MT1 and MT2 [50] 
that are present at the extracellular membrane present in 
several cells throughout the body [51]. It is found in the 
recent studies that melatonin MT1 receptor knockout-
mouse [52] has shown the results with increased insulin 
resistance and glucose tolerance [52, 53] in them which 
makes the MT1 receptor of melatonin an essential tar-
get for maintaining blood glucose in the body. Also it is 
revealed from a clinical study that administering mela-
tonin as treatment to the diabetic patients who have low 

levels of melatonin in their circulation [48], can improve 
their glucose levels by increasing insulin secretion [48, 
54]in their body (Fig. 8).

Future targets
Future targets, as the name suggest are the potential 
receptors or targets that can be new site for the devel-
oping new lead compounds in the diabetes treatment. 
Today, there is very little information available regarding 
their role in diabetes but these targets have potential to 
play a vital role in the treatment of diabetes (Table 2).

11β Hydroxysteroid dehydrogenase
It is an enzyme that converts the cortisone which is a glu-
cocorticoid [72] to its active form named cortisol [73]. 
It is currently available in these two isoforms which are 
11-hydroxysteroid dehydrogenase type 1 (11β-HSD1) & 
11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) 
[74]. It is stated that the high levels of glucocorticoid in 
the blood may cause glucose intolerance to the person, so 
by maintaining the levels of 11β-HSD1 enzyme it natu-
rally improves insulin sensitivity [55]. Reported studies 
suggesting that in many diabetic and obese animal stud-
ies [75] or when the specific 11β-HSD1 knockout mouse 
is used then there is a decrease in blood glucose levels, 
improved insulin sensitivity [76], have a better glucose 
tolerance [77] and also the regeneration of glucocorti-
coids in the body was absent in them. So, it is concluded 
that inhibiting the 11β-HSD1 may work in reducing 
insulin resistance and thus increasing insulin sensitivity 
by regulating the insulin signaling transduction system 
(Fig.  9) [78]. By taking all into consideration presented 
above 11β-HSD1 is a novel molecular target for the treat-
ment of diabetes mellitus.

ACRP‑30
Adipose tissue is long known for its ability to store 
fats but now the studies reveal that they also serve as a 
source of hormones like resistin, adipsin, leptin, TNF-α, 
adiponectin or Acrp30 [79]. It is discovered that serum 
protein Acrp30 performs a major part in the manage-
ment of diabetes mellitus [79], TNF-α is one of the main 
pro-inflammatory mediators responsible for the insu-
lin resistance [58]. It is also revealed from a study that 
Acrp30 levels are found to be decreased in many models 
of obesity and diabetes [80] due to high levels of TNF-α 
[56], which shows that this protein is negatively linked 
with diabetes (Fig.  10) [57], also showed that the mice 
lacking Acrp30 shows insulin resistance [58] leading to 
the development of diabetes mellitus. So, if the levels 
of Acrp30 will be increased in the circulation then the 

Table 1 Types of fatty acids

Types Characteristics References

Short-chain fatty acids (SCFAs) 1–6 carbon atoms [46]

Medium-chain fatty acids (MCFAs) 7–12 carbon atoms [46]

Long-chain fatty acids (LCFAs) 12 carbon atoms [46]

Fig. 6 Pharmacological effects of FFA-1 receptors

Fig. 7 Incretin release is stimulated by the glucose present in the 
small intestine, then incretins are passed to their target tissue is the 
pancreas, to stimulate the β- cells lead them to release additional 
insulin in action to the equal volume of blood glucose [47]
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Fig. 8 There is an increased production of Melatonin in T1DM (Type-1 diabetes mellitus) due to the activation of enzyme cascade which causes 
reduced β- cell function which then reduces the formation of insulin and rises the amount of glucagon in cells resulting in high blood glucose. 
Then in T2DM, the decreased production of Melatonin causes the increase in mRNA expression of melatonin membrane receptor which leads to 
the impaired insulin signaling that causes a upsurge in the insulin level leading to beta-cell exhaustion with high glucagon concentration leading 
to hyperglycemia

Table 2 Future Targets

Compound Class Mode of action Potential role in diabetes References

11β Hydroxysteroid dehydrogenase Glucocorticoids High levels cause glucose intoler-
ance

By inhibiting 11β-HSD Decrease 
in blood glucose levels, improved 
insulin sensitivity

[55]

ACRP-30 Hormone Low levels cause insulin sensitivity Increase in Acrp30 will increase the 
insulin sensitivity and decrease in 
blood glucose levels

[56–58]

FETUIN-A Glycoprotein Involved in the inflammation of the 
β-cells

Low levels of Fetuin-A will increase 
the insulin sensitivity

[59]

VISFATIN Protein Attaches to the insulin receptor Insulin-mimetic action [60]

METRNL Adipokine Cause up regulation of the PPARγ 
pathway

Increase in the insulin sensitivity [61]
[62, 63]

PEDF (Pigment epithelium-derived 
factor)

Glycoprotein Increase kinase-mediated Serine/
Threonine phosphorylation cascade 
of IRS which causes insulin resistance

Decreasing level of PEDF increases 
the insulin sensitivity

[64]

VASPIN (SERPIN A12) Serum glycoprotein Vaspin performs its action by inhibit-
ing the KLK7

Due to inhibition of KLK7, insulin 
signalling is improved and also 
the half-life of insulin is increased 
that helps in decreasing the blood 
glucose levels

[65, 66]

GPER (G protein-coupled estrogen 
receptor)

Glycoprotein Regulation of glucose homeostasis 
by binding to both Gi/o and Gs 
proteins

Increase insulin secretion [67–69]

GENE THERAPY Gene Act by correcting or repairing the 
defective genes

Suppression of auto reactive T cells 
to stop islet cells destruction

[70, 71]
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insulin sensitivity can be increased and blood glucose 
levels (Table  3) can be easily managed which will make 
Acrp30 a potential novel target for the treatment of dia-
betes mellitus.

FETUIN‑A
It is a glycoprotein produced primarily from the liver & 
releases into the circulation [82]. Fetuin-A is the major 
protein required for carrying free fatty acids (FFA) to 
the circulation [83] and involved in the inflammation of 
the β-cells [59] and can leads to β-cell deterioration in 
the pancreas thus causing insulin resistance and some 
other metabolic disorders (Fig.  11). Along with the 
insulin, Fetuin-A is a major protein that can bind with 
the outer region of the insulin receptor [84]. Fetuin-A 
inhibit the autophosphorylation of the tyrosine kinase 
which is one of the main enzymes for the insulin sign-
aling [85], that is totally opposite to the insulin action. 

There is the major interface among insulin and tyros-
ine kinase to balance the blood glucose in the system 
and if the concentration of the Fetuin-A will increase 
in the blood then the insulin resistance may occur in 
the body (Fig. 12) [59] and ultimately diabetes. Studies 
revealed that there is an increase in the insulin sensitiv-
ity in mice which are having Fetuin-A knockout genes 
in them [86] which shows the negative relation of the 
Fetuin-A with insulin sensitivity in diabetes [87]. These 
above listed factors indicate that Fetuin-A have poten-
tial to become a innovative aim for the management of 
diabetes mellitus in the future.

Visfatin
Visfatin, a multifunctional protein also known as Nico-
tinamide phosphoribosyl-transferase [88] discovered in 
2005 having different types (Table 4) [60]. It is found in 
number of tissues & organs like but mostly articulated 
in the visceral adipose tissue [60]. Previously it is also 

Fig. 9 Working of 11β- HSD1

Fig. 10 Role of ARCP30 in diabetes

Table 3 Functions of ACRP-30

ACRP-30 FUNCTIONS

Actions Target tissue References

Reduces plasma glucose concentra-
tion

Entire body system [81]

Improves insulin action Liver [81]

Upsurges fatty acid oxidation & 
reduces plasma fatty acid concentra-
tion

Skeletal muscle [80]
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known as the PBEF(Pre-B colony Enhancing Factor) and 
has insulin-like features[89]which means it supports to 
recover insulin sensitivity[89]that indicates it may have 
a role in diabetes also and makes it a novel approach for 
the treatment of diabetes mellitus. It has been shown that 
the serum visfatin concentration are increased along-
with the worsening of T2DM [90, 91] which creates a 
relation between visfatin and T2DM. Recent studies 
showed that visfatin attaches to the insulin receptor at a 

location other than that of insulin which shows that it has 
the insulin-mimetic action and enhances cell prolifera-
tion (Fig. 13) [60].

However, till now it is not clear how the Visfatin is com-
pletely related to diabetes but there are some stimulators 
and inhibitors of visfatin (Table 5), although scientists are 
working on the mechanism of visfatin in diabetes. With 
these evidences, it can be concluded that there is a cor-
relation between diabetes and visfatin in the body which 
turns it into a possible target for the management of dia-
betes mellitus.

Metrnl
Metrnl is derived as an adipokine obtained from the 
adipose tissues which are abundantly present in the 
subcutaneous white fat in the body [101] which play 
an important role in maintaining glucose homeostasis 
(Table 6), Metrnl also plays a major role in maintaining 
energy metabolism, lipid metabolism, cardiovascular 
function, immunological inflammation and also in insu-
lin sensitivity [62, 63]. In a study, researchers found that 
it works through the up regulation of the PPARγ pathway 
due to which there is an increase in the insulin sensitivity 
in Mice model [61]. Concurrently it is also found that, it 
promotes adipose tissue browning due to which there is 
an increase in energy expenditure and improved glucose 
tolerance (Fig. 14) [102].

Fig. 11 Role of Fetuin-A diabetes and other metabolic disorders

Fig. 12 Mechanism of Fetuin-A in diabetes
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Table 4 Types of Visfatin

Types of Visfatin in different Human Tissues

Tissue or cell Type of Visfatin Method of Determination References

Subcutaneous adipose tissue Visfatin mRNA RT-PCR [92]

Visceral adipose tissue Visfatin mRNA RT-PCR [93]

Macrophages Visfatin protein Immunohistochemistry [94]

3T3-L1 cell line Visfatin mRNA RT-PCR, Immunohistochemistry [95]

Monocytes Visfatin protein Immunohistochemistry [96]

Lymphocytes Visfatin mRNA RT-PCR [97]

Skeletal muscle Visfatin mRNA RT-PCR [92]

Placenta Visfatin mRNA RT-PCR [89]

Fetal membranes Visfatin protein Northern blot [98]

GI (colonic epithelium) Visfatin mRNA RT-PCR [94]

Synovial fluid Visfatin protein ELISA [99]

Plasma Visfatin protein ELISA, RIA [100]

Fig. 13 Role of visfatin in glucose homeostasis

Table 5 Visfatin inhibitors and stimulators

Stimulators and inhibitors of Visfatin

Stimulators Inhibitors Reference

Hypoxia, Hyperglycemia, Inflammation, TNF-alpha, IL-6, IL-1 beta, Chronic 
Kidney Disease, Labor/Pregnancy, PCOS(polycystic ovary syndrome), 
Cancer, HAART (highly active antiretroviral therapy), Spironolactone,  CoCl2 
(hypoxia mimetic agent)
Macrostemonoside A

Insulin, Somatostatin, Monounsaturated fatty acid (e.g. oleate) [89]
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PEDF (Pigment epithelium‑derived factor)
It is a 50  kDa secreted glycoprotein released from the 
adipose tissue and human retinal pigment cells which 
belongs to the family of serine protease inhibitors [112]. 
It works in hydrolyzing the lipid triglycerides into glyc-
erol and free fatty acids and thus moving the free fatty 
acids to the systemic circulation leading to inflamma-
tion in the cells. It gives rise to the kinase-mediated Ser-
ine/Threonine  phosphorylation cascade of IRS (insulin 
receptor substrate), due to this process the insulin sign-
aling is reduced which causes insulin resistance in the 
body cells [64]. Along with this, it also releases inflam-
matory mediators like TNF-α and IL-1(Interleukin-1) 
in the system due to that insulin insensitivity occurs in 
the body [112]. In a study it is investigated that after the 
administration of PEDF in animals there is a decrease in 
the insulin sensitivity which restores after the anti-PEDF 
given to them [113]. In children and adults, PEDF shows 
a positive correlation with insulin resistance [114]. So, 
if we can decrease the amount of PEDF in the circula-
tion that may help to increase the insulin sensitivity, this 
makes PEDF a potential novel approach for the treatment 
of diabetes mellitus and other metabolic syndromes in 
the body. PEDF show its action by targeting the insulin 
receptor substrate (IRS) given in (Fig. 15) where it blocks 
the insulin signaling that further stops the process of glu-
cose uptake by the cells, protein synthesis, glycogen syn-
thesis which shows an increase in the amount of blood 

glucose levels in the body. The other factors which are 
also activated by the PEDF are the free fatty acid (FFA), 
toll-like receptor4(TLR4), nuclear factor kappa B (NFκB), 
suppressor of cytokine signalling (SOCS3),Janus kinase 
(JAK2) which also blocks the insulin receptor substrate 
which together contributes in the decreased insulin sen-
sitivity and ultimately diabetes mellitus (Fig. 15).

Vaspin (Serpin A12)
Vaspin or Serpin A12 is a serum glycoprotein that 
comes under the serpin superfamily [115]. It is derived 
from the fat cells [116], plays an important role in 
modifying insulin activity [117]. It has been studied 
that, When diabetes severity increases, the serum lev-
els of the vaspin start decreasing [118], this creates an 
idea that if the levels of vaspin start increasing in the 
circulation then it could be helpful in the management 
of diabetes mellitus. In animal studies, it has been also 
observed that the administration of the vaspin into 
the rats shows the improvement in insulin sensitivity 
along with increased glucose tolerance [116]. These 
evidences make it a potential target for the treatment 
of diabetes mellitus and other metabolic disorders like 
obesity (Fig. 16). Vaspin performs its action by inhibit-
ing the KLK7 (kallikrein 7) which is an insulin-degrad-
ing enzyme that degrades the insulin and decreases the 
insulin half-life [65]. Due to the inhibition of KLK7, 

Fig. 14 Metrnl is involved in various pharmacological pathways through intracellular signalling between the cells. In nerve cells, it promotes the 
neurite outgrowth via the JAKSTAT3 and MEK-ERK signalling pathway. In fat cells due to upregulation of the Metrnl increases the lipid metabolism, 
relieves from the high-fat diet-induced inflammation and improves adipose remodeling through upregulation of PPARγ, due to which the insulin 
resistance is also improved. In muscle cells or myocytes it increases the PPARγ signalling which increases the phosphorylation of AMPK due to 
increased intracellular calcium and also encourages the phosphorylation of TBC1D1, HDAC5, and p38 MAPK in an AMPK-mediated manner, then 
promotes the expression and translocation of GLUT4, which thus improves the insulin sensitivity and reduces the inflammation [103]
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the insulin signalling is improved and also the half-
life of insulin is increased that helps in decreasing the 
blood glucose levels [66]. It also performs some other 
actions which indirectly reduce the blood glucose from 
the body like it reduces the food intake that ultimately 
reduces the hepatic glucose production (HGP) via the 
hepatic branch of the vagus nerve by reducing hepatic 
lipid accumulation and increasing insulin signalling 
in the liver. In white adipose tissue (WAT) and Brown 
adipose tissue (BAT), it reduces inflammation and 
increases insulin signaling and in CNS central nervous 
system it decreases food intake by triggering the vagus 
nerve (Fig. 16) [119].

GPER (G protein‑coupled estrogen receptor)
GPER is an orphan 7-transmembrane G-protein cou-
pled estrogen receptor [120, 121] that involved in 
estrogen signalling [122]. They are located in the intra-
cellular membrane of cells [123] and plays an important 
role in the regulation of glucose homeostasis, inflam-
mation [124], vascular tone and cell growth [122] by 
binding to both Gi/o and Gs proteins in the body [67]. 
In a GPER deficient female mouse model, it was found 

that there is an insufficient amount of insulin [68, 69] 
is producing in them that lead to the development of 
diabetes mellitus. It also has been shown in a study 
that in premenopausal women estrogen levels are high 
which shows the positive effects on maintaining the 
blood pressure, lipid metabolism, glucose homeostasis, 
as well as reducing inflammation [125] but after meno-
pause when the estrogen levels start declining which 
makes the women more prone to the insulin resistance 
and multiple metabolic disorders all of them contrib-
utes to the diabetes mellitus [126]. These evidences 
suggest that GPER could play a crucial role in manage-
ment diabetes and could become an interesting drug 
target for diabetes and related disorders (Fig. 17).

Gene therapy
Gene therapy is an emerging method for the treatment of 
diabetes mellitus that act by correcting or repairing the 
defective genes [71] which are responsible for diabetes 
mellitus. In this technique, transfer of genes can be done 
by the viral vector and non-viral transduction method to 
get the effect by the suppression of auto reactive T cells 
to stop islet cells destruction as a preventive method of 

Fig. 15 FFA: free fatty acids, INSR: Insulin receptor, IRS: insulin receptor substrate, JAK2: Janus kinase, LeptinR: Leptin receptor, NFκB: nuclear factor κ 
B, SOCS3: suppressor of cytokine signalling 3, TLR: toll-like receptor
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treatment or the replacement of the insulin gene [70]. It 
is found in a study that the stem cells may be used for 
the treatment of diabetes serving as the surrogate β-cells 
[127] as they can multiply in the culture easily. It has also 
been studied that when the modified stem cells are trans-
planted into the mice by intrahepatic injection the level 
of blood glucose was found to be low (Fig.  18). When 
the mice are sacrificed for the histopathological studies, 
the distribution of stem cells shows green fluorescence 
under fluorescent microscope and insulin presence was 

identified by brown stain after staining with anti-human 
insulin polyclonal antibody. It showed that mesenchy-
mal stem cells successfully expressed human insulin and 
was able to maintain normal blood glucose at the end of 
42  days study [70] This was compared to the mice not 
treated by gene therapy. So, there is a scope in gene ther-
apy as an evolving new technology that can used for the 
treatment of diabetes mellitus (Fig. 18).

Conclusion and future perspectives
Diabetes is a worldwide epidemic and vulnerable dis-
ease from which large number of patient are suffer-
ing currently. The primary goal of every therapy in the 
treatment of diabetes mellitus is to attain near-normal 
blood glucose levels in the body. Treatments available 
for diabetes are only able to manage its symptoms and 
delay its progression but not able to cure it properly, 
along with there are also various side effects associated 
with their uses. Researchers are continuously working 
in search of new lead compounds for the proper cure 
for the diabetes mellitus and its complications and try-
ing to make an approach in which the side effects should 
be minimal. The conventional approaches which has 
been used for a long time for the treatment of diabetes 
mellitus includes the Insulin therapy [5], Biguanides [8], 

Fig. 16 Role of vaspin in different organs linked to diabetes mellitus

Fig. 17 Role of GPER in different body organs affecting diabetes 
mellitus
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Sulphonylureas [5], Glinides [5], Thiazolidinediones [5], 
Gliptins [5], α- Glucosidase inhibitors [5], Amylin ana-
logues [5], SGLT-2 [9], Dopamine D-2 agonists [10]. As 
a primary targets they can only manage the symptoms 
and delay the progression and also consist of many side 
effects like weight gain, hypoglycemia, diarrhoea, nau-
sea, mitogenic effect, bladder cancer etc., [5, 129, 130] 
which is not good for the patients who are dealing with 
these metabolic diseases. To overcome these side effects 
researchers are continuously searching for new targets 
for diabetic therapy, in last decade targets like PPAR’s are 
the primary focus of researchers but despite of enormous 
pre-clinical studies very few leads are in clinical stud-
ies and in market, Because of these facts we can’t rely 
upon the current approaches to diabetes treatment and 
should explore some new innovative pharmacological 
targets. In this view, receptor like GPCR 119 [13], GPER 
[14], 11β-hydroxysteroid dehydrogenase 1 [15], Vaspin 
[16], Metrnl [17], PEDF [18], Fetuin-A [19], ACRP 30 
[20], Visfatin, Melatonin [21], GIP [22], GPCR [23] hav-
ing direct or indirect role in insulin regulation as sug-
gested by studies done. These receptors have potential 
to become targets in the treatment of diabetes and can 
become the landmark to find the permanent cure for dia-
betes and related complications. It is also suggested that 
in future there are possibilities in gene therapy or stem 
cells to become a therapeutic agent with better potential 
with lesser side effects.
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